Neutral glycosphingolipids and gangliosides of human lung and lung tumours. 1979

R Narasimhan, and R K Murray

In order to help determine whether alterations of the profiles of glycosphingolipids occur consistently in human tumours, the neutral glycosphingolipids and gangliosides of nine lung tumours (one adenocarcinoma, four squamous cell, two mixed adeno-squamous cell, one large cell and one oat-cell carcinomata) were analysed. The control tissue consisted of adjacent lung; it contained neutral glycosphingolipids corresponding in properties to glucosyl-, lactosyl-, globotriaosyl- and globotetraosyl-ceramides. All of the tumours also contained these four neutral glycosphingolipids. However, in addition, five of the tumours (two of the squamous, the large cell and the two mixed adeno-squamous cell carcinomata) contained neutral glycosphingolipids corresponding in properties to lactotriaosyl- and neolactotetraosyl-ceramides; these same tumours also exhibited higher amounts of lactosylceramide than the other tumours analysed. Both of the two former neutral glycosphingolipids and very substantial amounts of the latter neutral glycosphingolipid were detected in pneumonic lung and in polymorphonuclear leucocytes; it thus appears possible that these particular compounds were derived from these latter cells rather than from the tumour cells. The ganglioside patterns of the tumours were almost equivalent in complexity to that exhibited by the control lung tissue. This study shows that the profiles of two major classes of glycosphingolipids (neutral glycosphingolipids and gangliosides) occurring in lung tumours are almost as complex as those of the parent tissue, a finding in contrast with the notably simplified patterns of these lipids found in many cancer cells grown in vitro. It also suggests that when lactotriaosyl- and neolactotetraosyl-ceramides and high amounts of lactosylceramide are detected in human tumours, the possibility must be considered that these compounds are derived from polymorphonuclear leucocytes.

UI MeSH Term Description Entries
D008168 Lung Either of the pair of organs occupying the cavity of the thorax that effect the aeration of the blood. Lungs
D008175 Lung Neoplasms Tumors or cancer of the LUNG. Cancer of Lung,Lung Cancer,Pulmonary Cancer,Pulmonary Neoplasms,Cancer of the Lung,Neoplasms, Lung,Neoplasms, Pulmonary,Cancer, Lung,Cancer, Pulmonary,Cancers, Lung,Cancers, Pulmonary,Lung Cancers,Lung Neoplasm,Neoplasm, Lung,Neoplasm, Pulmonary,Pulmonary Cancers,Pulmonary Neoplasm
D009504 Neutrophils Granular leukocytes having a nucleus with three to five lobes connected by slender threads of chromatin, and cytoplasm containing fine inconspicuous granules and stainable by neutral dyes. LE Cells,Leukocytes, Polymorphonuclear,Polymorphonuclear Leukocytes,Polymorphonuclear Neutrophils,Neutrophil Band Cells,Band Cell, Neutrophil,Cell, LE,LE Cell,Leukocyte, Polymorphonuclear,Neutrophil,Neutrophil Band Cell,Neutrophil, Polymorphonuclear,Polymorphonuclear Leukocyte,Polymorphonuclear Neutrophil
D002241 Carbohydrates A class of organic compounds composed of carbon, hydrogen, and oxygen in a ratio of Cn(H2O)n. The largest class of organic compounds, including STARCH; GLYCOGEN; CELLULOSE; POLYSACCHARIDES; and simple MONOSACCHARIDES. Carbohydrate
D002849 Chromatography, Gas Fractionation of a vaporized sample as a consequence of partition between a mobile gaseous phase and a stationary phase held in a column. Two types are gas-solid chromatography, where the fixed phase is a solid, and gas-liquid, in which the stationary phase is a nonvolatile liquid supported on an inert solid matrix. Chromatography, Gas-Liquid,Gas Chromatography,Chromatographies, Gas,Chromatographies, Gas-Liquid,Chromatography, Gas Liquid,Gas Chromatographies,Gas-Liquid Chromatographies,Gas-Liquid Chromatography
D002855 Chromatography, Thin Layer Chromatography on thin layers of adsorbents rather than in columns. The adsorbent can be alumina, silica gel, silicates, charcoals, or cellulose. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Chromatography, Thin-Layer,Thin Layer Chromatography,Chromatographies, Thin Layer,Chromatographies, Thin-Layer,Thin Layer Chromatographies,Thin-Layer Chromatographies,Thin-Layer Chromatography
D005732 Gangliosides A subclass of ACIDIC GLYCOSPHINGOLIPIDS. They contain one or more sialic acid (N-ACETYLNEURAMINIC ACID) residues. Using the Svennerholm system of abbrevations, gangliosides are designated G for ganglioside, plus subscript M, D, or T for mono-, di-, or trisialo, respectively, the subscript letter being followed by a subscript arabic numeral to indicated sequence of migration in thin-layer chromatograms. (From Oxford Dictionary of Biochemistry and Molecular Biology, 1997) Ganglioside,Sialoglycosphingolipids
D006028 Glycosphingolipids Lipids containing at least one monosaccharide residue and either a sphingoid or a ceramide (CERAMIDES). They are subdivided into NEUTRAL GLYCOSPHINGOLIPIDS comprising monoglycosyl- and oligoglycosylsphingoids and monoglycosyl- and oligoglycosylceramides; and ACIDIC GLYCOSPHINGOLIPIDS which comprises sialosylglycosylsphingolipids (GANGLIOSIDES); SULFOGLYCOSPHINGOLIPIDS (formerly known as sulfatides), glycuronoglycosphingolipids, and phospho- and phosphonoglycosphingolipids. (From IUPAC's webpage) Asialoganglioside,Asialogangliosides,Glycosphingolipid,Sphingoglycolipid,Sphingoglycolipids
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D012794 Sialic Acids A group of naturally occurring N-and O-acyl derivatives of the deoxyamino sugar neuraminic acid. They are ubiquitously distributed in many tissues. N-Acetylneuraminic Acids,Acids, N-Acetylneuraminic,Acids, Sialic,N Acetylneuraminic Acids

Related Publications

R Narasimhan, and R K Murray
October 1986, Biochimica et biophysica acta,
R Narasimhan, and R K Murray
June 1982, Journal of biochemistry,
R Narasimhan, and R K Murray
January 1981, Methods in enzymology,
R Narasimhan, and R K Murray
January 1982, Advances in experimental medicine and biology,
R Narasimhan, and R K Murray
September 1982, Biochimica et biophysica acta,
Copied contents to your clipboard!