Derepression of beta-lactamase (penicillinase in Bacillus cereus by peptidoglycans. 1970

J Hochstadt Ozer, and D L Lowery, and A K Saz

In Bacillus cereus 569 a cellular inducer of beta-lactamase was isolated which has the same constituents and basic structure as the soluble peptidoglycan found in sporulation, extracts from spores, and germination extracts, and which was previously called "spore-peptide." The material has been extensively purified and characterized. Two acid-soluble, high-molecular-weight peptidoglycan fractions containing muramic acid, glucosamine, diaminopimelic acid, d-aspartate, and d- and l-alanine, -lysine, -glycine, and -glutamate, distinguishable on the basis of size and different amino acid to amino sugar ratios, have been found to be responsible for the observed induction. Both fractions are capable of inducing high levels of beta-lactamase in concentrations lower than those of benzyl penicillin required for optimal induction. Several experiments also suggest that it is the accumulation of such soluble peptidoglycan in penicillin-treated cells which leads to induction of beta-lactamase and not the penicillin itself. The "spore-peptide" inducer becomes available during sporulation, and endogenous derepression of beta-lactamase activity occurs simultaneously. Such derepression also occurs in a strain of B. cereus very sensitive to penicillin and in which both uninduced as well as "spore-peptide"-induced beta-lactamase is a small fraction of that produced by the typical penicillinase producer. These results suggest that beta-lactamase in B. cereus functions in cell wall metabolism during sporulation.

UI MeSH Term Description Entries
D008712 Methicillin One of the PENICILLINS which is resistant to PENICILLINASE but susceptible to a penicillin-binding protein. It is inactivated by gastric acid so administered by injection. Penicillin, Dimethoxyphenyl,Methicillin Hydrate, Monosodium Salt,Methicillin Monohydrate, Monosodium Salt,Methicillin Sodium,Meticillin,Metin,Staphcillin,Dimethoxyphenyl Penicillin
D010400 Penicillin G A penicillin derivative commonly used in the form of its sodium or potassium salts in the treatment of a variety of infections. It is effective against most gram-positive bacteria and against gram-negative cocci. It has also been used as an experimental convulsant because of its actions on GAMMA-AMINOBUTYRIC ACID mediated synaptic transmission. Benzylpenicillin,Benpen,Benzylpenicillin Potassium,Coliriocilina,Crystapen,Or-pen,Parcillin,Pekamin,Pengesod,Penibiot,Penicilina G Llorente,Penicillin G Jenapharm,Penicillin G Potassium,Penicillin G Sodium,Penicillin GrĂ¼nenthal,Penilevel,Peniroger,Pfizerpen,Sodiopen,Sodipen,Sodium Benzylpenicillin,Sodium Penicillin,Unicilina,Ursopen,Van-Pen-G
D010405 Penicillinase A beta-lactamase preferentially cleaving penicillins. (Dorland, 28th ed) EC 3.5.2.-. beta-Lactamase I,AER-I beta-Lactamase,Benzylpenicillinase,Carbenicillinase,Exopenicillinase,beta Lactamase III,beta Lactamase RP4,gamma-Penicillinase,AER I beta Lactamase,Lactamase RP4, beta,beta Lactamase I,beta-Lactamase, AER-I,gamma Penicillinase
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D011135 Polysaccharides, Bacterial Polysaccharides found in bacteria and in capsules thereof. Bacterial Polysaccharides
D002473 Cell Wall The outermost layer of a cell in most PLANTS; BACTERIA; FUNGI; and ALGAE. The cell wall is usually a rigid structure that lies external to the CELL MEMBRANE, and provides a protective barrier against physical or chemical agents. Cell Walls,Wall, Cell,Walls, Cell
D002498 Centrifugation Process of using a rotating machine to generate centrifugal force to separate substances of different densities, remove moisture, or simulate gravitational effects. It employs a large motor-driven apparatus with a long arm, at the end of which human and animal subjects, biological specimens, or equipment can be revolved and rotated at various speeds to study gravitational effects. (From Websters, 10th ed; McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
D002499 Centrifugation, Density Gradient Separation of particles according to density by employing a gradient of varying densities. At equilibrium each particle settles in the gradient at a point equal to its density. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Centrifugations, Density Gradient,Density Gradient Centrifugation,Density Gradient Centrifugations,Gradient Centrifugation, Density,Gradient Centrifugations, Density
D002850 Chromatography, Gel Chromatography on non-ionic gels without regard to the mechanism of solute discrimination. Chromatography, Exclusion,Chromatography, Gel Permeation,Chromatography, Molecular Sieve,Gel Filtration,Gel Filtration Chromatography,Chromatography, Size Exclusion,Exclusion Chromatography,Gel Chromatography,Gel Permeation Chromatography,Molecular Sieve Chromatography,Chromatography, Gel Filtration,Exclusion Chromatography, Size,Filtration Chromatography, Gel,Filtration, Gel,Sieve Chromatography, Molecular,Size Exclusion Chromatography
D002854 Chromatography, Paper An analytical technique for resolution of a chemical mixture into its component compounds. Compounds are separated on an adsorbent paper (stationary phase) by their varied degree of solubility/mobility in the eluting solvent (mobile phase). Paper Chromatography,Chromatographies, Paper,Paper Chromatographies

Related Publications

J Hochstadt Ozer, and D L Lowery, and A K Saz
January 1975, Methods in enzymology,
J Hochstadt Ozer, and D L Lowery, and A K Saz
November 1979, Acta pharmaceutica Hungarica,
J Hochstadt Ozer, and D L Lowery, and A K Saz
February 1976, European journal of biochemistry,
J Hochstadt Ozer, and D L Lowery, and A K Saz
November 1985, Biochemistry,
J Hochstadt Ozer, and D L Lowery, and A K Saz
January 1966, Journal of bacteriology,
J Hochstadt Ozer, and D L Lowery, and A K Saz
September 1968, Revista espanola de fisiologia,
J Hochstadt Ozer, and D L Lowery, and A K Saz
February 1975, The Biochemical journal,
J Hochstadt Ozer, and D L Lowery, and A K Saz
September 1954, Experientia,
J Hochstadt Ozer, and D L Lowery, and A K Saz
February 1970, Biochimica et biophysica acta,
J Hochstadt Ozer, and D L Lowery, and A K Saz
August 1980, Biochemistry,
Copied contents to your clipboard!