Glutamate and synaptic excitation of reticulospinal neurones of lamprey. 1979

G Matthews, and W O Wickelgren

1. Intracellular recordings were made from the cell bodies and axons of giant reticulospinal neurones (Müller cells) of the lamprey, and responses to bath- and ionophoretically applied glutamate and aspartate were studied. 2. Bath-applied glutamate and aspartate depolarized both cell bodies and axons, but there appeared to be an associated conductance increase only in the cell bodies. The depolarization of Müller axons by the bath-applied drugs probably resulted from the passive flow of current into them from spinal cells to which the axons are coupled electrically. 3. The reversal potentials for responses to ionophoretically applied glutamate and for excitatory post-synaptic potentials (e.p.s.p.s) evoked by stimulation of the contralateral vestibular nerve were directly determined in Müller cell bodies which had been damaged by penetration with low-resistance electrodes. The glutamate and e.p.s.p. reversal potentials were identical, the average difference in eight cells being 0.31 mV. The absolute value of the e.p.s.p.--glutamate reversal potential varied from --16 to --35 mV in different cells, with the more negative values occurring in less damaged cells with higher resting potentials. 4. Injection of Cl into Müller cell bodies had no effect on the e.p.s.p.--glutamate reversal potential. Reduction of the extracellular Na concentration to 1 over 10 normal produced a negative shift in the glutamate reversal potential. 5. It is proposed that the natural excitatory transmitter and glutamate produce identical conductance changes in Müller cells, involving an increase in Na and K conductance.

UI MeSH Term Description Entries
D007798 Lampreys Common name for the only family (Petromyzontidae) of eellike fish in the order Petromyzontiformes. They are jawless but have a sucking mouth with horny teeth. Eels, Lamprey,Petromyzontidae,Petromyzontiformes,Eel, Lamprey,Lamprey,Lamprey Eel,Lamprey Eels
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D002712 Chlorides Inorganic compounds derived from hydrochloric acid that contain the Cl- ion. Chloride,Chloride Ion Level,Ion Level, Chloride,Level, Chloride Ion
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D005399 Fishes A group of cold-blooded, aquatic vertebrates having gills, fins, a cartilaginous or bony endoskeleton, and elongated bodies covered with scales.
D005971 Glutamates Derivatives of GLUTAMIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the 2-aminopentanedioic acid structure. Glutamic Acid Derivatives,Glutamic Acids,Glutaminic Acids
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001224 Aspartic Acid One of the non-essential amino acids commonly occurring in the L-form. It is found in animals and plants, especially in sugar cane and sugar beets. It may be a neurotransmitter. (+-)-Aspartic Acid,(R,S)-Aspartic Acid,Ammonium Aspartate,Aspartate,Aspartate Magnesium Hydrochloride,Aspartic Acid, Ammonium Salt,Aspartic Acid, Calcium Salt,Aspartic Acid, Dipotassium Salt,Aspartic Acid, Disodium Salt,Aspartic Acid, Hydrobromide,Aspartic Acid, Hydrochloride,Aspartic Acid, Magnesium (1:1) Salt, Hydrochloride, Trihydrate,Aspartic Acid, Magnesium (2:1) Salt,Aspartic Acid, Magnesium-Potassium (2:1:2) Salt,Aspartic Acid, Monopotassium Salt,Aspartic Acid, Monosodium Salt,Aspartic Acid, Potassium Salt,Aspartic Acid, Sodium Salt,Calcium Aspartate,Dipotassium Aspartate,Disodium Aspartate,L-Aspartate,L-Aspartic Acid,Magnesiocard,Magnesium Aspartate,Mg-5-Longoral,Monopotassium Aspartate,Monosodium Aspartate,Potassium Aspartate,Sodium Aspartate,Aspartate, Ammonium,Aspartate, Calcium,Aspartate, Dipotassium,Aspartate, Disodium,Aspartate, Magnesium,Aspartate, Monopotassium,Aspartate, Monosodium,Aspartate, Potassium,Aspartate, Sodium,L Aspartate,L Aspartic Acid

Related Publications

G Matthews, and W O Wickelgren
August 1998, Neural networks : the official journal of the International Neural Network Society,
G Matthews, and W O Wickelgren
March 1997, The Journal of physiology,
G Matthews, and W O Wickelgren
January 1978, Comparative biochemistry and physiology. C: Comparative pharmacology,
G Matthews, and W O Wickelgren
August 1994, Journal of neurophysiology,
G Matthews, and W O Wickelgren
December 1986, The Journal of physiology,
G Matthews, and W O Wickelgren
October 1964, The Journal of physiology,
G Matthews, and W O Wickelgren
May 2000, Journal of neurophysiology,
Copied contents to your clipboard!