Kinetic constants for intestinal transport of four monosaccharides determined under conditions of variable effective resistance of the unstirred water layer. 1979

A B Thomson

Theoretical considerations have suggested that variations in the resistance of the unstirred water layer (UWL) have a profound effect on the kinetic constants of intestinal transport. In this study, a previously validated in vitro technique was employed to determine the unidirectional flux rate of glucose, galactose, 3-O-methyl glucose and fructose into the rabbit jejunum under carefully-defined conditions of stirring of the bulk phase known to yield different values for the effective resistance of the UWL. For each monosaccharide, uptake is much greater when the resistance of the UWL is low than when high. The maximal transport rate, Jd m, of glucose was half as large as the Jd m of galactose and 3-O-methyl glucose (3-O-MG), and was twice as great as the Jd m of fructose. The apparent affinity constant, Km * of glucose is less than that of fructose, which was lower than the Km * of galactose and 3-O-MG. The use of the Lineweaver-Burk double reciprocal plot is associated with an overestimation of both Jd m and Km *. This discrepancy between the true and apparent values of the kinetic constants is much greater for lower than for higher values of Jd m and Km *; variations in the resistance of the unstirred layer influences the magnitude and direction of the discrepancy. The apparent passive permeability coefficient is similar for each sugar, but because of the different values of Jd m, passive permeation contributes relatively more to the uptake of glucose and fructose than of galactose or 3-O-MG. Under conditions of high unstirred layer resistance, differences in uptake rates of the sugars are due to differences in their Jd m rather than their Km *. Kinetic analysis is compatible with the suggestion that the glucose carriers are predominantly near the tip of the villus, whereas those for galactose and 3-O-MG are located along the entire villus and the Km * of their carriers at the tip is lower than their Km * towards the base of the villus. It is proposed that there are multiple or heterogeneous intestinal carriers for glucose, galactose and 3-O-methyl glucose in the jejunum of the rabbit.

UI MeSH Term Description Entries
D007408 Intestinal Absorption Uptake of substances through the lining of the INTESTINES. Absorption, Intestinal
D007413 Intestinal Mucosa Lining of the INTESTINES, consisting of an inner EPITHELIUM, a middle LAMINA PROPRIA, and an outer MUSCULARIS MUCOSAE. In the SMALL INTESTINE, the mucosa is characterized by a series of folds and abundance of absorptive cells (ENTEROCYTES) with MICROVILLI. Intestinal Epithelium,Intestinal Glands,Epithelium, Intestinal,Gland, Intestinal,Glands, Intestinal,Intestinal Gland,Mucosa, Intestinal
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008757 Methylglucosides Methylglucopyranosides
D009005 Monosaccharides Single chain carbohydrates that are the most basic units of CARBOHYDRATES. They are typically colorless crystalline substances with a sweet taste and have the same general formula CnH2nOn. Monosaccharide,Simple Sugar,Simple Sugars,Sugar, Simple,Sugars, Simple
D010539 Permeability Property of membranes and other structures to permit passage of light, heat, gases, liquids, metabolites, and mineral ions. Permeabilities
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D005632 Fructose A monosaccharide in sweet fruits and honey that is soluble in water, alcohol, or ether. It is used as a preservative and an intravenous infusion in parenteral feeding. Levulose,Apir Levulosa,Fleboplast Levulosa,Levulosa,Levulosa Baxter,Levulosa Braun,Levulosa Grifols,Levulosa Ibys,Levulosa Ife,Levulosa Mein,Levulosado Bieffe Medit,Levulosado Braun,Levulosado Vitulia,Plast Apyr Levulosa Mein,Levulosa, Apir,Levulosa, Fleboplast
D005690 Galactose An aldohexose that occurs naturally in the D-form in lactose, cerebrosides, gangliosides, and mucoproteins. Deficiency of galactosyl-1-phosphate uridyltransferase (GALACTOSE-1-PHOSPHATE URIDYL-TRANSFERASE DEFICIENCY DISEASE) causes an error in galactose metabolism called GALACTOSEMIA, resulting in elevations of galactose in the blood. D-Galactose,Galactopyranose,Galactopyranoside,D Galactose
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose

Related Publications

A B Thomson
January 1982, The American journal of physiology,
Copied contents to your clipboard!