An ultrastructural study of epididymal mouse spermatozoa binding to zonae pellucidae in vitro: sequential relationship to the acrosome reaction. 1979

P M Saling, and J Sowinski, and B T Storey

Mouse sperm bind to the zona pellucida of the egg prior to penetration of the zona and entry into the perivitelline space. The question then arises: when does the acrosome reaction occur relative to these processes? An ultrastructural study of mouse epididymal sperm bound to the surface of the zona and in the privitelline space was undertaken to clarify this point. Cumulus-free mouse eggs were inseminated in either a complete defined culture medium capable of supporting in vitro fertilization or in Tris/NaCl buffer containing Ca+2. Both media support sperm binding to the zona to the same extent; binding is complete in 15 minutes. Unbound sperm were removed by a step gradient density centrifugation to yield a preparation of eggs with sperm firmly bound. All sperm in the perivitelline space had undergone the acrosome reaction. Sperm bound at the surface of the zonae pellucidae of eggs recovered at ten minutes after insemination all had intact acrosomes. At 40 minutes after insemination, half of the sperm were intact; the other half were in the initial stages of the acrosome reaction. At 90 minutes after insemination, 12% of the sperm had undergone the full acrosome reaction and were starting to penetrate the zona; of the balance, half were in various stages of the acrosome reaction, while half were still intact. These findings support the hypothesis that the sequence of the early reactions leading to fertilization in the mouse is: intact sperm binding to zona; acrosome reaction at the zona surface; penetration of the zona.

UI MeSH Term Description Entries
D008297 Male Males
D010063 Ovum A mature haploid female germ cell extruded from the OVARY at OVULATION. Egg,Egg, Unfertilized,Ova,Eggs, Unfertilized,Unfertilized Egg,Unfertilized Eggs
D004822 Epididymis The convoluted cordlike structure attached to the posterior of the TESTIS. Epididymis consists of the head (caput), the body (corpus), and the tail (cauda). A network of ducts leaving the testis joins into a common epididymal tubule proper which provides the transport, storage, and maturation of SPERMATOZOA.
D005260 Female Females
D005306 Fertilization The fusion of a spermatozoon (SPERMATOZOA) with an OVUM thus resulting in the formation of a ZYGOTE. Conception,Fertilization, Delayed,Fertilization, Polyspermic,Conceptions,Delayed Fertilization,Delayed Fertilizations,Fertilizations,Fertilizations, Delayed,Fertilizations, Polyspermic,Polyspermic Fertilization,Polyspermic Fertilizations
D000177 Acrosome The cap-like structure covering the anterior portion of SPERM HEAD. Acrosome, derived from LYSOSOMES, is a membrane-bound organelle that contains the required hydrolytic and proteolytic enzymes necessary for sperm penetration of the egg in FERTILIZATION. Acrosomes
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D013075 Sperm Capacitation The structural and functional changes by which SPERMATOZOA become capable of oocyte FERTILIZATION. It normally requires exposing the sperm to the female genital tract for a period of time to bring about increased SPERM MOTILITY and the ACROSOME REACTION before fertilization in the FALLOPIAN TUBES can take place. Capacitation of Spermatozoa,Capacitation, Sperm,Spermatozoa Capacitation
D013084 Sperm-Ovum Interactions Interactive processes between the oocyte (OVUM) and the sperm (SPERMATOZOA) including sperm adhesion, ACROSOME REACTION, sperm penetration of the ZONA PELLUCIDA, and events leading to FERTILIZATION. Ovum-Sperm Interactions,Sperm Penetration,Egg-Sperm Interactions,Gamete Interactions,Oocyte-Sperm Interactions,Sperm-Egg Interactions,Sperm-Egg Penetration,Sperm-Oocyte Interactions,Sperm-Oocyte Penetration,Sperm-Ovum Penetration,Sperm-Zona Pellucida Penetration,Egg Sperm Interactions,Egg-Sperm Interaction,Gamete Interaction,Oocyte Sperm Interactions,Oocyte-Sperm Interaction,Ovum Sperm Interactions,Ovum-Sperm Interaction,Sperm Egg Interactions,Sperm Egg Penetration,Sperm Oocyte Interactions,Sperm Oocyte Penetration,Sperm Ovum Interactions,Sperm Ovum Penetration,Sperm Penetrations,Sperm Zona Pellucida Penetration,Sperm-Egg Interaction,Sperm-Egg Penetrations,Sperm-Oocyte Interaction,Sperm-Oocyte Penetrations,Sperm-Ovum Interaction,Sperm-Ovum Penetrations,Sperm-Zona Pellucida Penetrations

Related Publications

P M Saling, and J Sowinski, and B T Storey
May 1996, Journal of reproduction and fertility,
P M Saling, and J Sowinski, and B T Storey
October 1981, Proceedings of the National Academy of Sciences of the United States of America,
P M Saling, and J Sowinski, and B T Storey
July 1984, The Journal of experimental zoology,
P M Saling, and J Sowinski, and B T Storey
September 1987, Gamete research,
P M Saling, and J Sowinski, and B T Storey
June 1995, Hiroshima journal of medical sciences,
Copied contents to your clipboard!