Evidence for specific binding of uncapacitated boar spermatozoa to porcine zonae pellucidae in vitro. 1984

R N Peterson, and L D Russell, and W P Hunt

Washed ejaculated boar sperm and sperm from the cauda epididymis bind to the zona pellucida of fixed porcine eggs in large numbers. Sperm incubated in the presence of dextran sulfate (8 K daltons or 500 K daltons) or fucoidan and then washed no longer bind to eggs. Other acid carbohydrates (heparin, chondroitin sulfates, inositol hexasulfate, carboxymethylcellulose) fail to block sperm-egg binding even when added directly to sperm-egg suspensions. Seminal plasma and the seminal vesicle secretion contain basic proteins which bind tightly to sperm and bind reversibly to eggs preventing sperm from binding to eggs. When dextran sulfate or fucoidan are mixed with the vesicular secretion, from which seminal plasma basic proteins originate (Hunt et al., '83), the secretion loses the capacity to prevent sperm from binding to eggs; this suggests that seminal vesicle proteins can bind to the same site on zonae as do sperm and thus seminal plasma may modify sperm-egg interactions. Corpus and cauda epididymal sperm also bind in large numbers to the zona pellucida of isolated eggs but high concentrations of caput sperm, which exhibit high motility in the presence of caffeine, bind only in few numbers. Thus a component that enhances sperm-zona binding is apparently formed on the plasma membranes of uncapacitated sperm during passage through the epididymis. This finding, and an earlier observation that antibodies raised against uncapacitated sperm plasma membranes block sperm-egg binding in vivo (Peterson et al., '83) suggest that this component may be involved in sperm zona interaction in vivo.

UI MeSH Term Description Entries
D008297 Male Males
D010063 Ovum A mature haploid female germ cell extruded from the OVARY at OVULATION. Egg,Egg, Unfertilized,Ova,Eggs, Unfertilized,Unfertilized Egg,Unfertilized Eggs
D011134 Polysaccharides Long chain polymeric CARBOHYDRATES composed of MONOSACCHARIDES linked by glycosidic bonds. Glycan,Glycans,Polysaccharide
D005260 Female Females
D005306 Fertilization The fusion of a spermatozoon (SPERMATOZOA) with an OVUM thus resulting in the formation of a ZYGOTE. Conception,Fertilization, Delayed,Fertilization, Polyspermic,Conceptions,Delayed Fertilization,Delayed Fertilizations,Fertilizations,Fertilizations, Delayed,Fertilizations, Polyspermic,Polyspermic Fertilization,Polyspermic Fertilizations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012661 Semen The thick, yellowish-white, viscid fluid secretion of male reproductive organs discharged upon ejaculation. In addition to reproductive organ secretions, it contains SPERMATOZOA and their nutrient plasma. Seminal Plasma,Plasma, Seminal
D012669 Seminal Vesicles A saclike, glandular diverticulum on each ductus deferens in male vertebrates. It is united with the excretory duct and serves for temporary storage of semen. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Seminal Vesicle,Vesicle, Seminal,Vesicles, Seminal
D013075 Sperm Capacitation The structural and functional changes by which SPERMATOZOA become capable of oocyte FERTILIZATION. It normally requires exposing the sperm to the female genital tract for a period of time to bring about increased SPERM MOTILITY and the ACROSOME REACTION before fertilization in the FALLOPIAN TUBES can take place. Capacitation of Spermatozoa,Capacitation, Sperm,Spermatozoa Capacitation
D013084 Sperm-Ovum Interactions Interactive processes between the oocyte (OVUM) and the sperm (SPERMATOZOA) including sperm adhesion, ACROSOME REACTION, sperm penetration of the ZONA PELLUCIDA, and events leading to FERTILIZATION. Ovum-Sperm Interactions,Sperm Penetration,Egg-Sperm Interactions,Gamete Interactions,Oocyte-Sperm Interactions,Sperm-Egg Interactions,Sperm-Egg Penetration,Sperm-Oocyte Interactions,Sperm-Oocyte Penetration,Sperm-Ovum Penetration,Sperm-Zona Pellucida Penetration,Egg Sperm Interactions,Egg-Sperm Interaction,Gamete Interaction,Oocyte Sperm Interactions,Oocyte-Sperm Interaction,Ovum Sperm Interactions,Ovum-Sperm Interaction,Sperm Egg Interactions,Sperm Egg Penetration,Sperm Oocyte Interactions,Sperm Oocyte Penetration,Sperm Ovum Interactions,Sperm Ovum Penetration,Sperm Penetrations,Sperm Zona Pellucida Penetration,Sperm-Egg Interaction,Sperm-Egg Penetrations,Sperm-Oocyte Interaction,Sperm-Oocyte Penetrations,Sperm-Ovum Interaction,Sperm-Ovum Penetrations,Sperm-Zona Pellucida Penetrations

Related Publications

R N Peterson, and L D Russell, and W P Hunt
October 1981, Proceedings of the National Academy of Sciences of the United States of America,
R N Peterson, and L D Russell, and W P Hunt
January 1982, Journal of reproduction and fertility. Supplement,
R N Peterson, and L D Russell, and W P Hunt
September 1987, Gamete research,
R N Peterson, and L D Russell, and W P Hunt
May 1983, Journal of reproductive immunology,
R N Peterson, and L D Russell, and W P Hunt
February 2005, Reproduction (Cambridge, England),
R N Peterson, and L D Russell, and W P Hunt
March 1987, Biochemistry international,
R N Peterson, and L D Russell, and W P Hunt
November 1988, American journal of reproductive immunology and microbiology : AJRIM,
Copied contents to your clipboard!