Polymer synthesis in killed bacteria: lethality of 2',3'-dideoxyadenosine. 1966

A M Doering, and M Jansen, and S S Cohen

Doering, Alice McGovern (University of Pennsylvania School of Medicine, Philadelphia), Miekie Jansen, and Seymour S. Cohen. Polymer synthesis in killed bacteria: lethality of 2',3'-dideoxyadenosine. J. Bacteriol. 92:565-574. 1966.-We studied the metabolic capabilities of cells that had lost the ability to multiply under a variety of lethal treatments. Cultures of a polyauxotrophic mutant of Escherichia coli strain 15 requiring thymine, arginine, uracil, and adenine for growth were killed to a few per cent survivors by several different methods. These treatments included streptomycin, thymineless death, d-arabinosyladenine (ara-A), and 2',3'-dideoxyadenosine (DDA). The killed cells were washed and supplied with complete media, and were compared with control cells with respect to the ability to incorporate thymine, arginine, and uracil. Cells killed with streptomycin in the absence of thymine were only partially inhibited in deoxyribonucleic acid (DNA) synthesis; they were markedly inhibited in synthesis of ribonucleic acid (RNA) and protein. Cells that had suffered thymineless death were essentially uninhibited in DNA synthesis, partially so in RNA synthesis, but extensively inhibited in protein synthesis. Killing by ara-A did not prevent DNA synthesis, but markedly inhibited RNA and protein synthesis. The lethality of DDA was studied in the presence of exogenous adenosine; lethality was partially prevented by deoxyadenosine. Dideoxyadenosine was similar to ara-A and thymineless death in killing in a pattern in which RNA and protein synthesis continued while DNA synthesis was inhibited. Cells killed by DDA, however, were markedly inhibited in subsequent thymine incorporation, unlike cells killed by the other methods. In addition, at this time, the DDA-killed cells were more inhibited in incorporation of arginine than of uracil. DDA also potentiated thymineless death; when cells were killed rapidly by the combined treatment, only the ability to synthesize DNA was lost irreversibly. This agent (DDA) may permit the detailed study in E. coli of the relation of DNA synthesis to numerous phenomena, such as genetic recombination, sequential transcription, and the number and distribution of chromosome breaks.

UI MeSH Term Description Entries
D009705 Nucleosides Purine or pyrimidine bases attached to a ribose or deoxyribose. (From King & Stansfield, A Dictionary of Genetics, 4th ed) Nucleoside,Nucleoside Analog,Nucleoside Analogs,Analog, Nucleoside,Analogs, Nucleoside
D011108 Polymers Compounds formed by the joining of smaller, usually repeating, units linked by covalent bonds. These compounds often form large macromolecules (e.g., BIOPOLYMERS; PLASTICS). Polymer
D011874 Radiometry The measurement of radiation by photography, as in x-ray film and film badge, by Geiger-Mueller tube, and by SCINTILLATION COUNTING. Geiger-Mueller Counters,Nuclear Track Detection,Radiation Dosimetry,Dosimetry, Radiation,Geiger Counter,Geiger-Mueller Counter Tube,Geiger-Mueller Probe,Geiger-Mueller Tube,Radiation Counter,Counter Tube, Geiger-Mueller,Counter Tubes, Geiger-Mueller,Counter, Geiger,Counter, Radiation,Counters, Geiger,Counters, Geiger-Mueller,Counters, Radiation,Detection, Nuclear Track,Dosimetries, Radiation,Geiger Counters,Geiger Mueller Counter Tube,Geiger Mueller Counters,Geiger Mueller Probe,Geiger Mueller Tube,Geiger-Mueller Counter Tubes,Geiger-Mueller Probes,Geiger-Mueller Tubes,Probe, Geiger-Mueller,Probes, Geiger-Mueller,Radiation Counters,Radiation Dosimetries,Tube, Geiger-Mueller,Tube, Geiger-Mueller Counter,Tubes, Geiger-Mueller,Tubes, Geiger-Mueller Counter
D002247 Carbon Isotopes Stable carbon atoms that have the same atomic number as the element carbon but differ in atomic weight. C-13 is a stable carbon isotope. Carbon Isotope,Isotope, Carbon,Isotopes, Carbon
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000225 Adenine A purine base and a fundamental unit of ADENINE NUCLEOTIDES. Vitamin B 4,4, Vitamin B,B 4, Vitamin
D000227 Adenine Nucleotides Adenine Nucleotide,Adenosine Phosphate,Adenosine Phosphates,Nucleotide, Adenine,Nucleotides, Adenine,Phosphate, Adenosine,Phosphates, Adenosine
D001120 Arginine An essential amino acid that is physiologically active in the L-form. Arginine Hydrochloride,Arginine, L-Isomer,DL-Arginine Acetate, Monohydrate,L-Arginine,Arginine, L Isomer,DL Arginine Acetate, Monohydrate,Hydrochloride, Arginine,L Arginine,L-Isomer Arginine,Monohydrate DL-Arginine Acetate
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial

Related Publications

A M Doering, and M Jansen, and S S Cohen
August 1965, The Journal of organic chemistry,
A M Doering, and M Jansen, and S S Cohen
January 1998, Nucleosides & nucleotides,
A M Doering, and M Jansen, and S S Cohen
May 2000, Organic letters,
A M Doering, and M Jansen, and S S Cohen
November 1997, Journal of medicinal chemistry,
A M Doering, and M Jansen, and S S Cohen
July 1998, Bioorganic & medicinal chemistry letters,
A M Doering, and M Jansen, and S S Cohen
May 1991, Investigational new drugs,
A M Doering, and M Jansen, and S S Cohen
July 1989, Investigational new drugs,
A M Doering, and M Jansen, and S S Cohen
February 1988, Acta crystallographica. Section C, Crystal structure communications,
Copied contents to your clipboard!