Amino acid reabsorption in the proximal tubule of rat kidney: stereospecificity and passive diffusion studied by continuous microperfusion. 1977

S Silbernagl, and H Völkl

Renal tubular reabsorption of glycine and of the L- and D-isomers of histidine, serine, phenyl-alanine, methionine, proline and cystine was investigated in vivo et situ by continuous microperfusion of single proximal convolutions of the rat kidney. In the case of glycine and the L-isomers, tubular reabsorption is saturable to a great extent. The D-amino acids are reabsorbed much more slowly than the respective L-forms. Furthermore in the case of methionine and perhaps also of proline, serine and phenylalanine, the fractional reabsorption decreases in the presence of high concentrations of the L-form. This indicates that the D-isomers also have a measurable affinity for the reabsorption mechanisms of the renal tubule. The very poor reabsorption of D-amino acids in the presence of their L-isomers indicates that simple passive diffusion plays only a relatively small role in tubular amino acid reabsorption. Permeability coefficients estimated from these findings are in the range from 1--5 X 10(-7) cm2 - s-1. These values are very similar to those found for other organic molecules of comparable molecular weights.

UI MeSH Term Description Entries
D007687 Kidney Tubules, Proximal The renal tubule portion that extends from the BOWMAN CAPSULE in the KIDNEY CORTEX into the KIDNEY MEDULLA. The proximal tubule consists of a convoluted proximal segment in the cortex, and a distal straight segment descending into the medulla where it forms the U-shaped LOOP OF HENLE. Proximal Kidney Tubule,Proximal Renal Tubule,Kidney Tubule, Proximal,Proximal Kidney Tubules,Proximal Renal Tubules,Renal Tubule, Proximal,Renal Tubules, Proximal,Tubule, Proximal Kidney,Tubule, Proximal Renal,Tubules, Proximal Kidney,Tubules, Proximal Renal
D008297 Male Males
D004058 Diffusion The tendency of a gas or solute to pass from a point of higher pressure or concentration to a point of lower pressure or concentration and to distribute itself throughout the available space. Diffusion, especially FACILITATED DIFFUSION, is a major mechanism of BIOLOGICAL TRANSPORT. Diffusions
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013237 Stereoisomerism The phenomenon whereby compounds whose molecules have the same number and kind of atoms and the same atomic arrangement, but differ in their spatial relationships. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed) Molecular Stereochemistry,Stereoisomers,Stereochemistry, Molecular,Stereoisomer
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

S Silbernagl, and H Völkl
June 1973, Pflugers Archiv : European journal of physiology,
S Silbernagl, and H Völkl
March 1993, The American journal of physiology,
S Silbernagl, and H Völkl
November 1974, The Journal of clinical investigation,
S Silbernagl, and H Völkl
August 1976, The American journal of physiology,
S Silbernagl, and H Völkl
January 1980, The International journal of biochemistry,
S Silbernagl, and H Völkl
October 1965, Pflugers Archiv fur die gesamte Physiologie des Menschen und der Tiere,
S Silbernagl, and H Völkl
January 1971, Pflugers Archiv : European journal of physiology,
S Silbernagl, and H Völkl
December 1976, Pflugers Archiv : European journal of physiology,
S Silbernagl, and H Völkl
March 1962, The American journal of physiology,
Copied contents to your clipboard!