Frequency response of the lateral-line organ of Xenopus laevis. 1978

A B Kroese, and J M Van der Zalm, and J Van den Bercken

The stimulus response relation of the epidermal lateral-line organ of Xenopus laevis was studied by recording activity of single afferent nerve fibres in isolated preparations. Linear frequency response analysis over a frequency range of 0.1--100Hz was performed under steady-state conditions, using small amplitude, sinusoidal water displacements produced by a glass sphere at a short distance from the skin. Period histograms of afferent nerve activity were computed, and amplitude, phase and mean activity of the response were determined by means of Fourier analysis. A standardization procedure at the start of each experiment made scaling of the frequency responses of different preparations unnecessary. The results show that for small stimulus amplitudes the response of the lateral-line organ over the whole range of frequencies studied can adequately be described as a modulation of the spontaneous activity. The amplitude of the response is proportional to the stimulus amplitude, and the phase of the response is independent of stimulus amplitude. The lateral-line organ of Xenopus laevis can thus be regarded as a linear system for stimuli which produce modulation of the spontaneous activity. The frequency response demonstrates unequivocally that the lateral-line organ of Xenopus laevis functions as a water velocity detector. For frequencies of stimulation from 0.1--20Hz the gain increases with a slope of 7.5 dB/oct, and up to 5Hz the response is almost in phase with the water velocity. The extent to which the different transmission steps between stimulus and response will contribute to the frequency response is discussed.

UI MeSH Term Description Entries
D008465 Mechanoreceptors Cells specialized to transduce mechanical stimuli and relay that information centrally in the nervous system. Mechanoreceptor cells include the INNER EAR hair cells, which mediate hearing and balance, and the various somatosensory receptors, often with non-neural accessory structures. Golgi Tendon Organ,Golgi Tendon Organs,Krause's End Bulb,Krause's End Bulbs,Mechanoreceptor,Mechanoreceptor Cell,Meissner's Corpuscle,Neurotendinous Spindle,Neurotendinous Spindles,Receptors, Stretch,Ruffini's Corpuscle,Ruffini's Corpuscles,Stretch Receptor,Stretch Receptors,Mechanoreceptor Cells,Bulb, Krause's End,Bulbs, Krause's End,Cell, Mechanoreceptor,Cells, Mechanoreceptor,Corpuscle, Meissner's,Corpuscle, Ruffini's,Corpuscles, Ruffini's,End Bulb, Krause's,End Bulbs, Krause's,Krause End Bulb,Krause End Bulbs,Krauses End Bulb,Krauses End Bulbs,Meissner Corpuscle,Meissners Corpuscle,Organ, Golgi Tendon,Organs, Golgi Tendon,Receptor, Stretch,Ruffini Corpuscle,Ruffini Corpuscles,Ruffinis Corpuscle,Ruffinis Corpuscles,Spindle, Neurotendinous,Spindles, Neurotendinous,Tendon Organ, Golgi,Tendon Organs, Golgi
D010812 Physical Stimulation Act of eliciting a response from a person or organism through physical contact. Stimulation, Physical,Physical Stimulations,Stimulations, Physical
D011984 Sensory Receptor Cells Specialized afferent neurons capable of transducing sensory stimuli into NERVE IMPULSES to be transmitted to the CENTRAL NERVOUS SYSTEM. Sometimes sensory receptors for external stimuli are called exteroceptors; for internal stimuli are called interoceptors and proprioceptors. Nerve Endings, Sensory,Neurons, Sensory,Neuroreceptors,Receptors, Neural,Neural Receptors,Receptors, Sensory,Sensory Neurons,Sensory Receptors,Nerve Ending, Sensory,Neural Receptor,Neuron, Sensory,Neuroreceptor,Receptor Cell, Sensory,Receptor Cells, Sensory,Receptor, Neural,Receptor, Sensory,Sensory Nerve Ending,Sensory Nerve Endings,Sensory Neuron,Sensory Receptor,Sensory Receptor Cell
D006198 Hair Cells, Auditory Sensory cells in the organ of Corti, characterized by their apical stereocilia (hair-like projections). The inner and outer hair cells, as defined by their proximity to the core of spongy bone (the modiolus), change morphologically along the COCHLEA. Towards the cochlear apex, the length of hair cell bodies and their apical STEREOCILIA increase, allowing differential responses to various frequencies of sound. Auditory Hair Cells,Cochlear Hair Cells,Auditory Hair Cell,Cell, Cochlear Hair,Cells, Cochlear Hair,Cochlear Hair Cell,Hair Cell, Auditory,Hair Cell, Cochlear,Hair Cells, Cochlear
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012212 Rheology The study of the deformation and flow of matter, usually liquids or fluids, and of the plastic flow of solids. The concept covers consistency, dilatancy, liquefaction, resistance to flow, shearing, thixotrophy, and VISCOSITY. Flowmetry,Velocimetry,Velocimetries
D012867 Skin The outer covering of the body that protects it from the environment. It is composed of the DERMIS and the EPIDERMIS.
D014867 Water A clear, odorless, tasteless liquid that is essential for most animal and plant life and is an excellent solvent for many substances. The chemical formula is hydrogen oxide (H2O). (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Hydrogen Oxide
D014981 Xenopus An aquatic genus of the family, Pipidae, occurring in Africa and distinguished by having black horny claws on three inner hind toes.
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

A B Kroese, and J M Van der Zalm, and J Van den Bercken
February 1972, The Japanese journal of physiology,
A B Kroese, and J M Van der Zalm, and J Van den Bercken
January 1990, Brain research,
A B Kroese, and J M Van der Zalm, and J Van den Bercken
August 2000, Journal of the Association for Research in Otolaryngology : JARO,
A B Kroese, and J M Van der Zalm, and J Van den Bercken
March 1978, Journal of neurophysiology,
A B Kroese, and J M Van der Zalm, and J Van den Bercken
February 1990, Hearing research,
A B Kroese, and J M Van der Zalm, and J Van den Bercken
November 1970, Journal of embryology and experimental morphology,
A B Kroese, and J M Van der Zalm, and J Van den Bercken
September 1951, Nature,
A B Kroese, and J M Van der Zalm, and J Van den Bercken
June 1971, The Journal of experimental biology,
A B Kroese, and J M Van der Zalm, and J Van den Bercken
January 1980, Experimental brain research,
A B Kroese, and J M Van der Zalm, and J Van den Bercken
January 1980, Birth defects original article series,
Copied contents to your clipboard!