Neural transduction in Xenopus laevis lateral line system. 1978

D Strelioff, and V Honrubia

1. The process of neural excitation in hair cell systems was studied in an in vitro preparation of the Xenopus laevis (African clawed toad) lateral line organ. A specially designed stimulus chamber was used to apply accurately controlled pressure, water movement, or electrical stimuli, and to record the neural responses of the two afferent fibers innervating each organ or stitch. The objective of the study was to determine the characteristics of the neural responses to these stimuli, and thus gain insight into the transduction process. 2. A sustained deflection of the hair cell cilia due to a constant flow of water past the capula resulted in a maintained change in the mean firing rate (MFR) of the afferent fibers. The data also demonstrated that the neural response was proportional to the velocity of the water flow and indicated that both deflection and movement of the cilia were the effective physiological stimuli for this hair cell system. 3. The preparations responded to sinusoidal water movements (past the capula) over the entire frequency range of the stimulus chamber, 0.1-130 Hz, and were most sensitive between 10 and 40 Hz. The variation of the MFR and the percent modulation indicated that the average dynamic range of each organ was 23.5 dB. 4. The thresholds, if any, for sustained pressure changes and for sinusoidal pressure variations in the absence of water movements were very high. Due to the limitations of the stimulus chamber it was not possible to generate pressure stimuli of sufficient magnitude to elicit a neural response without also generating suprathreshold water-movement stimuli. Sustained pressures had no detectable effect on the neural response to water-movement stimuli. 5. The preparations were very sensitive to electrical potentials applied across the toad skin on which the hair cells were located. Potentials which made the ciliated surfaces of the hair cells positive with respect to their bases increased the MFR of the fibers, whereas negative potentials decreased it. The responses to sinusoidal electrical stimuli were similar to responses to water-movement stimuli with respect to frequency and dynamic ranges. Thresholds as low as 100 muV peak to peak (p-p) for 16-Hz stimuli were found. 6. The characteristics of the neural responses to electrical stimulation as well as supporting data obtained from the studies of the effects of anoxia on the evoked responses indicate that the electrical stimulus acts on the hair cells or on the synapses, rather than directly on the nerve fibers. This finding suggests that receptor potentials or their associated currents play an important role in the process of neural excitation in hair cell systems.

UI MeSH Term Description Entries
D008465 Mechanoreceptors Cells specialized to transduce mechanical stimuli and relay that information centrally in the nervous system. Mechanoreceptor cells include the INNER EAR hair cells, which mediate hearing and balance, and the various somatosensory receptors, often with non-neural accessory structures. Golgi Tendon Organ,Golgi Tendon Organs,Krause's End Bulb,Krause's End Bulbs,Mechanoreceptor,Mechanoreceptor Cell,Meissner's Corpuscle,Neurotendinous Spindle,Neurotendinous Spindles,Receptors, Stretch,Ruffini's Corpuscle,Ruffini's Corpuscles,Stretch Receptor,Stretch Receptors,Mechanoreceptor Cells,Bulb, Krause's End,Bulbs, Krause's End,Cell, Mechanoreceptor,Cells, Mechanoreceptor,Corpuscle, Meissner's,Corpuscle, Ruffini's,Corpuscles, Ruffini's,End Bulb, Krause's,End Bulbs, Krause's,Krause End Bulb,Krause End Bulbs,Krauses End Bulb,Krauses End Bulbs,Meissner Corpuscle,Meissners Corpuscle,Organ, Golgi Tendon,Organs, Golgi Tendon,Receptor, Stretch,Ruffini Corpuscle,Ruffini Corpuscles,Ruffinis Corpuscle,Ruffinis Corpuscles,Spindle, Neurotendinous,Spindles, Neurotendinous,Tendon Organ, Golgi,Tendon Organs, Golgi
D009475 Neurons, Afferent Neurons which conduct NERVE IMPULSES to the CENTRAL NERVOUS SYSTEM. Afferent Neurons,Afferent Neuron,Neuron, Afferent
D010100 Oxygen An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration. Dioxygen,Oxygen-16,Oxygen 16
D010812 Physical Stimulation Act of eliciting a response from a person or organism through physical contact. Stimulation, Physical,Physical Stimulations,Stimulations, Physical
D011312 Pressure A type of stress exerted uniformly in all directions. Its measure is the force exerted per unit area. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Pressures
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D006198 Hair Cells, Auditory Sensory cells in the organ of Corti, characterized by their apical stereocilia (hair-like projections). The inner and outer hair cells, as defined by their proximity to the core of spongy bone (the modiolus), change morphologically along the COCHLEA. Towards the cochlear apex, the length of hair cell bodies and their apical STEREOCILIA increase, allowing differential responses to various frequencies of sound. Auditory Hair Cells,Cochlear Hair Cells,Auditory Hair Cell,Cell, Cochlear Hair,Cells, Cochlear Hair,Cochlear Hair Cell,Hair Cell, Auditory,Hair Cell, Cochlear,Hair Cells, Cochlear
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012679 Sense Organs Specialized organs adapted for the reception of stimuli by the NERVOUS SYSTEM. Sensory System,Organ, Sense,Sense Organ,Sensory Systems,System, Sensory
D014872 Water Movements The flow of water in enviromental bodies of water such as rivers, oceans, water supplies, aquariums, etc. It includes currents, tides, and waves. Movement, Water,Movements, Water,Water Movement

Related Publications

D Strelioff, and V Honrubia
November 1970, Journal of embryology and experimental morphology,
D Strelioff, and V Honrubia
June 1971, The Journal of experimental biology,
D Strelioff, and V Honrubia
November 2021, Journal of neurophysiology,
D Strelioff, and V Honrubia
October 1971, The Journal of experimental zoology,
D Strelioff, and V Honrubia
June 1971, The Journal of experimental biology,
D Strelioff, and V Honrubia
September 1951, Nature,
D Strelioff, and V Honrubia
August 1985, Journal of embryology and experimental morphology,
D Strelioff, and V Honrubia
July 1978, Pflugers Archiv : European journal of physiology,
D Strelioff, and V Honrubia
May 2014, Journal of morphology,
D Strelioff, and V Honrubia
January 1980, Birth defects original article series,
Copied contents to your clipboard!