Effect of neuroleptics and other drugs on monoamine uptake by membranes of adrenal chromaffin granules. 1977

A Pletscher

1 The effects have been investigated of various reserpine-like, neuroleptic, antidepressant and other compounds on the adenosine-5'-triphosphate (ATP)-dependent uptake of noradrenaline (NA) (reserpine-sensitive) and tryptamine (reserpine-resistant) by membranes of isolated chromaffin granules of bovine adrenal medulla. 2 Reserpine and Ro 4-1284 (2-hydroxy-2-ethyl-3-isobutyl-9,10-dimethoxy-hexahydro-11bH-benzo(a)quinolizine) as well as neuroleptics (e.g. chlorpromazine and haloperidol) inhibited the NA uptake, but the reserpine-like drugs were more potent. In contrast, Ro 4-1284 showed a considerably weaker effect thatn the neuroleptics in interfering with tryptamine uptake. Chlorpromazine had about the same potency in inhibiting NA and tryptamine uptake, whereas the action of haloperidol was more pronounced on the uptake of NA than of tryptamine. 3 The relative potencies of neuroleptic drugs in inhibiting NA uptake by granule membranes in vitro corresponded only partly to their relative potencies in enhancing dopamine turnover in vivo. 4 The inhibition of NA uptake by chloropromazine and Ro 4-1284 appeared to be of the noncompetitive type. 5 Chlorpromazine did not influence the decrease in ATP induced by granule membranes in the incubation medium. 6 Other basic, but not acidic compounds also inhibited NA uptake by granule membranes; their potency was of the order of that of chlorpromazine (antidepressants) or weaker (e.g. benzodiazepines). 7 In conclusion, the mechanism of action of neuroleptics probably differs from that of reserpine-like drugs in the inhibition of monoamine uptake by membranes of catecholamine storage organelles. While interference with the granular storage of dopamine at the granule membrane level may contribute to the in vivo action of neuroleptics (e.g. in enhancing dopamine turnover), additional effects of these drugs must be involved in vivo, e.g. blockade of pre- and postsynaptic dopamine receptors.

UI MeSH Term Description Entries
D008566 Membranes Thin layers of tissue which cover parts of the body, separate adjacent cavities, or connect adjacent structures. Membrane Tissue,Membrane,Membrane Tissues,Tissue, Membrane,Tissues, Membrane
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D012110 Reserpine An alkaloid found in the roots of Rauwolfia serpentina and R. vomitoria. Reserpine inhibits the uptake of norepinephrine into storage vesicles resulting in depletion of catecholamines and serotonin from central and peripheral axon terminals. It has been used as an antihypertensive and an antipsychotic as well as a research tool, but its adverse effects limit its clinical use. Raunervil,Raupasil,Rausedil,Rausedyl,Serpasil,Serpivite,V-Serp,V Serp
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D003594 Cytoplasmic Granules Condensed areas of cellular material that may be bounded by a membrane. Cytoplasmic Granule,Granule, Cytoplasmic,Granules, Cytoplasmic
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000313 Adrenal Medulla The inner portion of the adrenal gland. Derived from ECTODERM, adrenal medulla consists mainly of CHROMAFFIN CELLS that produces and stores a number of NEUROTRANSMITTERS, mainly adrenaline (EPINEPHRINE) and NOREPINEPHRINE. The activity of the adrenal medulla is regulated by the SYMPATHETIC NERVOUS SYSTEM. Adrenal Medullas,Medulla, Adrenal,Medullas, Adrenal
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000929 Antidepressive Agents, Tricyclic Substances that contain a fused three-ring moiety and are used in the treatment of depression. These drugs block the uptake of norepinephrine and serotonin into axon terminals and may block some subtypes of serotonin, adrenergic, and histamine receptors. However, the mechanism of their antidepressant effects is not clear because the therapeutic effects usually take weeks to develop and may reflect compensatory changes in the central nervous system. Antidepressants, Tricyclic,Tricyclic Antidepressant,Tricyclic Antidepressant Drug,Tricyclic Antidepressive Agent,Tricyclic Antidepressive Agents,Antidepressant Drugs, Tricyclic,Agent, Tricyclic Antidepressive,Agents, Tricyclic Antidepressive,Antidepressant Drug, Tricyclic,Antidepressant, Tricyclic,Antidepressive Agent, Tricyclic,Drug, Tricyclic Antidepressant,Drugs, Tricyclic Antidepressant,Tricyclic Antidepressant Drugs,Tricyclic Antidepressants
D001679 Biogenic Amines A group of naturally occurring amines derived by enzymatic decarboxylation of the natural amino acids. Many have powerful physiological effects (e.g., histamine, serotonin, epinephrine, tyramine). Those derived from aromatic amino acids, and also their synthetic analogs (e.g., amphetamine), are of use in pharmacology. Amines, Biogenic,Biogenic Amine,Amine, Biogenic

Related Publications

Copied contents to your clipboard!