Junctional membrane uncoupling. Permeability transformations at a cell membrane junction. 1967

W R Loewenstein, and M Nakas, and S J Socolar

The permeability of the membrane surfaces where cells are in contact (junctional membranes) in Chironomus salivary glands depends on Ca(++) and Mg(++). When the concentration of these ions at the junctional membranes is raised sufficiently, these normally highly permeable membranes seal off; their permeability falls one to three orders, as they approach the nonjunctional membranes in conductance. This permeability transformation is achieved in three ways: (a) by iontophoresis of Ca(++) into the cell; (b) by entry of Ca(++) and/or Mg(++) from the extracellular fluid into the cell through leaks in the cell surface membrane (e.g., injury); or (c) by entry of these ions through leaks arising, probably primarily in the perijunctional insulation, due to trypsin digestion, anisotonicity, alkalinity, or chelation. Ca(++) and Mg(++) appear to have three roles in the junctional coupling processes: (a) in the permeability of the junctional membranes; (b) in the permeability of the perijunctional insulation; and (c) a role long known- in the mechanical stability of the cell junction. The two latter roles may well be closely interdependent, but the first is clearly independent of the others.

UI MeSH Term Description Entries
D007478 Iontophoresis Therapeutic introduction of ions of soluble salts into tissues by means of electric current. In medical literature it is commonly used to indicate the process of increasing the penetration of drugs into surface tissues by the application of electric current. It has nothing to do with ION EXCHANGE; AIR IONIZATION nor PHONOPHORESIS, none of which requires current. Iontophoreses
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008962 Models, Theoretical Theoretical representations that simulate the behavior or activity of systems, processes, or phenomena. They include the use of mathematical equations, computers, and other electronic equipment. Experimental Model,Experimental Models,Mathematical Model,Model, Experimental,Models (Theoretical),Models, Experimental,Models, Theoretic,Theoretical Study,Mathematical Models,Model (Theoretical),Model, Mathematical,Model, Theoretical,Models, Mathematical,Studies, Theoretical,Study, Theoretical,Theoretical Model,Theoretical Models,Theoretical Studies
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002463 Cell Membrane Permeability A quality of cell membranes which permits the passage of solvents and solutes into and out of cells. Permeability, Cell Membrane
D004175 Diptera An order of the class Insecta. Wings, when present, number two and distinguish Diptera from other so-called flies, while the halteres, or reduced hindwings, separate Diptera from other insects with one pair of wings. The order includes the families Calliphoridae, Oestridae, Phoridae, SARCOPHAGIDAE, Scatophagidae, Sciaridae, SIMULIIDAE, Tabanidae, Therevidae, Trypetidae, CERATOPOGONIDAE; CHIRONOMIDAE; CULICIDAE; DROSOPHILIDAE; GLOSSINIDAE; MUSCIDAE; TEPHRITIDAE; and PSYCHODIDAE. The larval form of Diptera species are called maggots (see LARVA). Flies, True,Flies,Dipteras,Fly,Fly, True,True Flies,True Fly
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

W R Loewenstein, and M Nakas, and S J Socolar
January 1981, The Journal of membrane biology,
W R Loewenstein, and M Nakas, and S J Socolar
January 1966, Science (New York, N.Y.),
W R Loewenstein, and M Nakas, and S J Socolar
April 1969, The Journal of general physiology,
W R Loewenstein, and M Nakas, and S J Socolar
January 1974, The Journal of membrane biology,
W R Loewenstein, and M Nakas, and S J Socolar
August 1970, Science (New York, N.Y.),
W R Loewenstein, and M Nakas, and S J Socolar
March 1971, The Journal of membrane biology,
W R Loewenstein, and M Nakas, and S J Socolar
December 1992, Development (Cambridge, England),
W R Loewenstein, and M Nakas, and S J Socolar
April 1987, Laboratory investigation; a journal of technical methods and pathology,
Copied contents to your clipboard!