Cell junction and cycle AMP: III. Promotion of junctional membrane permeability and junctional membrane particles in a junction-deficient cell type. 1981

R Azarnia, and G Dahl, and W R Loewenstein

The cyclic nucleotide effect on junction was studied in C1-1D cells, a mouse cancer cell type that fails to make permeable junctions in ordinary confluent culture. Upon administration of cyclic AMP, dibutyryl cyclic AMP, dibutyryl cyclic AMP plus caffeine (db-cAMP-caffeine), or cholera toxin (an adenylate cyclase activator), the cells acquired permeable junctions; they became electrically coupled and transferred fluorescent tracer molecules among each other - a transfer exhibiting the molecular size limit of permeation of normal cell-to-cell channels. The effect took several hours to develop. With the db-cAMP-caffeine treatment, junctional permeability emerged within two hours in one-fifth of the cell population, and within the next few hours in the entire population. This development was not prevented by the cytokinesis inhibitor cytochalasin B. Permeable junctions formed also in two other conditions where the cell-endogenous cyclic AMP level may be expected to increase: serum starvation and low cell density. After three weeks of starving, the cells of serum, a junctional permeability arose in confluent cultures, which on feeding with serum disappeared within two to three days. At low cell density, namely below confluency, the cells made permeable junctions, unstarved. In cultures of rather uniform density, the frequency of permeable junctions was inversely related to the average density, over the subconfluent range; at densities of about 1 X 10(4) cells/cm2, where the cells had few mutual contacts, 80% of the pairs presumed to be in contact were electrically coupled. In cultures with adjoining territories of high (confluent) and low cell density, there was coupling only in the last, and in this low-density state the cells were also capable of coupling with other mammalian cell types (mouse 3T3-BalbC and human Lesch-Nyhan cells).

UI MeSH Term Description Entries
D007365 Intercellular Junctions Direct contact of a cell with a neighboring cell. Most such junctions are too small to be resolved by light microscopy, but they can be visualized by conventional or freeze-fracture electron microscopy, both of which show that the interacting CELL MEMBRANE and often the underlying CYTOPLASM and the intervening EXTRACELLULAR SPACE are highly specialized in these regions. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p792) Cell Junctions,Cell Junction,Intercellular Junction,Junction, Cell,Junction, Intercellular,Junctions, Cell,Junctions, Intercellular
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008856 Microscopy, Fluorescence Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye. Fluorescence Microscopy,Immunofluorescence Microscopy,Microscopy, Immunofluorescence,Fluorescence Microscopies,Immunofluorescence Microscopies,Microscopies, Fluorescence,Microscopies, Immunofluorescence
D002110 Caffeine A methylxanthine naturally occurring in some beverages and also used as a pharmacological agent. Caffeine's most notable pharmacological effect is as a central nervous system stimulant, increasing alertness and producing agitation. It also relaxes SMOOTH MUSCLE, stimulates CARDIAC MUSCLE, stimulates DIURESIS, and appears to be useful in the treatment of some types of headache. Several cellular actions of caffeine have been observed, but it is not entirely clear how each contributes to its pharmacological profile. Among the most important are inhibition of cyclic nucleotide PHOSPHODIESTERASES, antagonism of ADENOSINE RECEPTORS, and modulation of intracellular calcium handling. 1,3,7-Trimethylxanthine,Caffedrine,Coffeinum N,Coffeinum Purrum,Dexitac,Durvitan,No Doz,Percoffedrinol N,Percutaféine,Quick-Pep,Vivarin,Quick Pep,QuickPep
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002463 Cell Membrane Permeability A quality of cell membranes which permits the passage of solvents and solutes into and out of cells. Permeability, Cell Membrane
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002772 Cholera Toxin An ENTEROTOXIN from VIBRIO CHOLERAE. It consists of two major protomers, the heavy (H) or A subunit and the B protomer which consists of 5 light (L) or B subunits. The catalytic A subunit is proteolytically cleaved into fragments A1 and A2. The A1 fragment is a MONO(ADP-RIBOSE) TRANSFERASE. The B protomer binds cholera toxin to intestinal epithelial cells and facilitates the uptake of the A1 fragment. The A1 catalyzed transfer of ADP-RIBOSE to the alpha subunits of heterotrimeric G PROTEINS activates the production of CYCLIC AMP. Increased levels of cyclic AMP are thought to modulate release of fluid and electrolytes from intestinal crypt cells. Cholera Toxin A,Cholera Toxin B,Cholera Toxin Protomer A,Cholera Toxin Protomer B,Cholera Toxin Subunit A,Cholera Toxin Subunit B,Choleragen,Choleragenoid,Cholera Enterotoxin CT,Cholera Exotoxin,Cholera Toxin A Subunit,Cholera Toxin B Subunit,Procholeragenoid,Enterotoxin CT, Cholera,Exotoxin, Cholera,Toxin A, Cholera,Toxin B, Cholera,Toxin, Cholera
D003470 Culture Media Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN. Media, Culture
D003994 Bucladesine A cyclic nucleotide derivative that mimics the action of endogenous CYCLIC AMP and is capable of permeating the cell membrane. It has vasodilator properties and is used as a cardiac stimulant. (From Merck Index, 11th ed) Dibutyryl Adenosine-3',5'-Monophosphate,Dibutyryl Cyclic AMP,(But)(2) cAMP,Bucladesine, Barium (1:1) Salt,Bucladesine, Disodium Salt,Bucladesine, Monosodium Salt,Bucladesine, Sodium Salt,DBcAMP,Dibutyryl Adenosine 3,5 Monophosphate,N',O'-Dibutyryl-cAMP,N(6),0(2')-Dibutyryl Cyclic AMP,AMP, Dibutyryl Cyclic,Adenosine-3',5'-Monophosphate, Dibutyryl,Cyclic AMP, Dibutyryl,Dibutyryl Adenosine 3',5' Monophosphate,Disodium Salt Bucladesine,Monosodium Salt Bucladesine,N',O' Dibutyryl cAMP,Sodium Salt Bucladesine

Related Publications

R Azarnia, and G Dahl, and W R Loewenstein
August 1967, The Journal of general physiology,
R Azarnia, and G Dahl, and W R Loewenstein
January 1981, The Journal of membrane biology,
R Azarnia, and G Dahl, and W R Loewenstein
January 1985, The Journal of cell biology,
R Azarnia, and G Dahl, and W R Loewenstein
January 1974, The Journal of membrane biology,
R Azarnia, and G Dahl, and W R Loewenstein
January 2020, Journal of periodontal research,
R Azarnia, and G Dahl, and W R Loewenstein
April 1969, The Journal of general physiology,
R Azarnia, and G Dahl, and W R Loewenstein
April 1987, Laboratory investigation; a journal of technical methods and pathology,
R Azarnia, and G Dahl, and W R Loewenstein
March 1971, The Journal of membrane biology,
Copied contents to your clipboard!