Sequence-specific DNA damage induced by reduced mitomycin C and 7-N-(p-hydroxyphenyl)mitomycin C. 1984

K Ueda, and T Komano

Mitomycin C reduced with sodium borohydride induced the DNA damage at deoxyguanosines preferentially in dinucleotide sequence G-T. The DNA damage produced strand breaks when subsequently heated. The DNA damage scarcely occurred when the end-labeled DNA was preincubated with ethidium bromide or actinomycin D before the addition of mitomycin C and the reducing agent. Fully reduced mitomycin C did not induce the DNA damage. The mitomycin C-inducing DNA damage seems to require the intercalation of the partially reduced mitomycin C of short life time, probably semiquinone radical, between DNA base pairs. The inhibitory effects of sodium chloride and radical scavengers suggested that the requirement of the covalent bond formation of mitomycin C to DNA and the involvement of oxygen radicals in the DNA damage. 7-N-(p-hydroxyphenyl)mitomycin C, which is reported to show a higher antitumor activity and a lower toxicity than mitomycin C, was readily reduced with dithiothreitol and induced the sequence-specific DNA damage, whereas mitomycin C was not.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008937 Mitomycins A group of methylazirinopyrroloindolediones obtained from certain Streptomyces strains. They are very toxic antibiotics used as ANTINEOPLASTIC AGENTS in some solid tumors. PORFIROMYCIN and MITOMYCIN are the most useful members of the group.
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010584 Bacteriophage phi X 174 The type species of the genus MICROVIRUS. A prototype of the small virulent DNA coliphages, it is composed of a single strand of supercoiled circular DNA, which on infection, is converted to a double-stranded replicative form by a host enzyme. Coliphage phi X 174,Enterobacteria phage phi X 174,Phage phi X 174,phi X 174 Phage,Phage phi X174
D001894 Borohydrides A class of inorganic or organic compounds that contain the borohydride (BH4-) anion. Borohydride
D002614 Chelating Agents Chemicals that bind to and remove ions from solutions. Many chelating agents function through the formation of COORDINATION COMPLEXES with METALS. Chelating Agent,Chelator,Complexons,Metal Antagonists,Chelators,Metal Chelating Agents,Agent, Chelating,Agents, Chelating,Agents, Metal Chelating,Antagonists, Metal,Chelating Agents, Metal
D004229 Dithiothreitol A reagent commonly used in biochemical studies as a protective agent to prevent the oxidation of SH (thiol) groups and for reducing disulphides to dithiols. Cleland Reagent,Cleland's Reagent,Sputolysin,Clelands Reagent,Reagent, Cleland,Reagent, Cleland's
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

K Ueda, and T Komano
January 1984, Investigational new drugs,
K Ueda, and T Komano
October 1982, Gan to kagaku ryoho. Cancer & chemotherapy,
K Ueda, and T Komano
September 1985, Gan to kagaku ryoho. Cancer & chemotherapy,
K Ueda, and T Komano
September 1984, Gan to kagaku ryoho. Cancer & chemotherapy,
K Ueda, and T Komano
June 1984, Gan to kagaku ryoho. Cancer & chemotherapy,
Copied contents to your clipboard!