Heme regulation of HeLa cell transferrin receptor number. 1984

J H Ward, and I Jordan, and J P Kushner, and J Kaplan

The number of diferic transferrin receptors on HeLa cells decreases when cells are grown in iron-supplemented media. The experiments reported here suggest that heme is the iron-containing compound which serves as the signal for receptor number regulation. When HeLa cells were grown in the presence of hemin, transferrin receptor number decreased to a greater degree than when cells were grown in equivalent amounts of iron supplied as ferric ammonium citrate. Incubation of cells in conditions which increased cellular heme content resulted in a decrease in cellular transferrin receptors. Incubating cells with 5-aminolevulinic acid (thus bypassing the rate-limiting step in heme biosynthesis, 5-aminolevulinic acid synthase) led to a decrease in transferrin receptor number. Incubation of cells with an inhibitor of heme oxygenase, Sn-protoporphyrin IX, also led to a decrease in transferrin receptor number. When cellular heme content was decreased by inhibiting heme synthesis with succinylacetone (an inhibitor of 5-aminolevulinic acid dehydratase), or by depriving cells of iron with deferoxamine, an increase in HeLa cell transferrin receptor number was seen. When HeLa cells were incubated with inducers of heme oxygenase (CoCl2, SnCl2, Co-protoporphyrin IX), transferrin receptor number also increased. The effects of all compounds which alter transferrin receptor number were dependent on the concentration of the supplement, as well as the duration of the supplementation. These experiments suggest that intracellular heme content may be an important signal controlling transferrin receptor number.

UI MeSH Term Description Entries
D007501 Iron A metallic element with atomic symbol Fe, atomic number 26, and atomic weight 55.85. It is an essential constituent of HEMOGLOBINS; CYTOCHROMES; and IRON-BINDING PROTEINS. It plays a role in cellular redox reactions and in the transport of OXYGEN. Iron-56,Iron 56
D007700 Kinetics The rate dynamics in chemical or physical systems.
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D011990 Receptors, Transferrin Membrane glycoproteins found in high concentrations on iron-utilizing cells. They specifically bind iron-bearing transferrin, are endocytosed with its ligand and then returned to the cell surface where transferrin without its iron is released. Transferrin Receptors,Transferrin Receptor,Receptor, Transferrin
D004790 Enzyme Induction An increase in the rate of synthesis of an enzyme due to the presence of an inducer which acts to derepress the gene responsible for enzyme synthesis. Induction, Enzyme
D006367 HeLa Cells The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for, among other things, VIRUS CULTIVATION and PRECLINICAL DRUG EVALUATION assays. Cell, HeLa,Cells, HeLa,HeLa Cell
D006418 Heme The color-furnishing portion of hemoglobin. It is found free in tissues and as the prosthetic group in many hemeproteins. Ferroprotoporphyrin,Protoheme,Haem,Heme b,Protoheme IX
D006419 Heme Oxygenase (Decyclizing) A mixed function oxidase enzyme which during hemoglobin catabolism catalyzes the degradation of heme to ferrous iron, carbon monoxide and biliverdin in the presence of molecular oxygen and reduced NADPH. The enzyme is induced by metals, particularly cobalt. Haem Oxygenase,Heme Oxygenase,Oxygenase, Haem,Oxygenase, Heme
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000622 Aminolevulinic Acid A compound produced from succinyl-CoA and GLYCINE as an intermediate in heme synthesis. It is used as a PHOTOCHEMOTHERAPY for actinic KERATOSIS. 5-Amino Levulinic Acid,5-Aminolaevulinate,5-Aminolevulinate,Aminolevulinic Acid Hydrochloride,Delta-Aminolevulinic Acid,Levulan,5 Amino Levulinic Acid,5 Aminolaevulinate,5 Aminolevulinate,Acid Hydrochloride, Aminolevulinic,Acid, 5-Amino Levulinic,Acid, Aminolevulinic,Acid, Delta-Aminolevulinic,Delta Aminolevulinic Acid,Hydrochloride, Aminolevulinic Acid,Levulinic Acid, 5-Amino

Related Publications

J H Ward, and I Jordan, and J P Kushner, and J Kaplan
September 1982, The Journal of biological chemistry,
J H Ward, and I Jordan, and J P Kushner, and J Kaplan
January 1982, The EMBO journal,
J H Ward, and I Jordan, and J P Kushner, and J Kaplan
January 1991, Pathobiology : journal of immunopathology, molecular and cellular biology,
J H Ward, and I Jordan, and J P Kushner, and J Kaplan
January 2009, Blood cells, molecules & diseases,
J H Ward, and I Jordan, and J P Kushner, and J Kaplan
December 2004, Blood,
J H Ward, and I Jordan, and J P Kushner, and J Kaplan
October 2020, Communications biology,
J H Ward, and I Jordan, and J P Kushner, and J Kaplan
March 1992, Gastroenterology,
J H Ward, and I Jordan, and J P Kushner, and J Kaplan
March 1990, The Journal of biological chemistry,
J H Ward, and I Jordan, and J P Kushner, and J Kaplan
December 1991, Hepatology (Baltimore, Md.),
Copied contents to your clipboard!