Two genes for ribosomal protein 51 of Saccharomyces cerevisiae complement and contribute to the ribosomes. 1984

N Abovich, and M Rosbash

We cloned and sequenced the second gene coding for yeast ribosomal protein 51 (RP51B). When the DNA sequence of this gene was compared with the DNA sequence of RP51A (J.L. Teem and M. Rosbash, Proc. Natl. Acad. Sci. U.S.A. 80:4403--4407, 1983), the following conclusions emerged: both genes code for a protein of 135 amino acids; both open reading frames are interrupted by a single intron which occurs directly after the initiating methionine; the open reading frames are 96% homologous and code for the same protein with the exception of the carboxy-terminal amino acid; DNA sequence homology outside of the coding region is extremely limited. The cloned genes, in combination with the one-step gene disruption techniques of Rothstein (R. J. Rothstein, Methods Enzymol. 101:202-211, 1983), were used to generate haploid strains containing mutations in the RP51A or RP51B genes or in both. Strains missing a normal RP51A gene grew poorly (180-min generation time versus 130 min for the wild type), whereas strains carrying a mutant RP51B were relatively normal. Strains carrying mutations in the two genes grew extremely poorly (6 to 9 h), which led us to conclude that RP51A and RP51B were both expressed. The results of Northern blot and primer extension experiments indicate that strains with a wild-type copy of the RP51B gene and a mutant (or deleted) RP51A gene grow slowly because of an insufficient amount of RP51 mRNA. The growth defect was completely rescued with additional copies of RP51B. The data suggest that RP51A contributes more RP51 mRNA (and more RP51 protein) than does RP51B and that intergenic dosage compensation, sufficient to rescue the growth defect of strains missing a wild-type RP51A gene, does not take place.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D005800 Genes, Fungal The functional hereditary units of FUNGI. Fungal Genes,Fungal Gene,Gene, Fungal
D005838 Genotype The genetic constitution of the individual, comprising the ALLELES present at each GENETIC LOCUS. Genogroup,Genogroups,Genotypes
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012269 Ribosomal Proteins Proteins found in ribosomes. They are believed to have a catalytic function in reconstituting biologically active ribosomal subunits. Proteins, Ribosomal,Ribosomal Protein,Protein, Ribosomal

Related Publications

N Abovich, and M Rosbash
April 1995, Molecular & general genetics : MGG,
N Abovich, and M Rosbash
October 1981, The Journal of biological chemistry,
N Abovich, and M Rosbash
May 1993, Molecular & general genetics : MGG,
N Abovich, and M Rosbash
January 1988, Acta biochimica Polonica,
Copied contents to your clipboard!