Effects of N-ethylmaleimide on adenosine receptors of rat fat cells and human platelets. 1984

D Ukena, and E Poeschla, and E Hüttemann, and U Schwabe

N-Ethylmaleimide (NEM) differentially modified Ri adenosine receptors in rat fat cells and Ra adenosine receptors in human platelets. Pretreatment of rat fat cell membranes with NEM inhibited the binding of the agonist (-)N6-phenylisopropyl[3H]adenosine [( 3H]PIA), but did not affect the binding of the antagonist 1,3-diethyl-8-[3H]phenylxanthine [( 3H]DPX). The IC50-value for inhibition of [3H]PIA binding was 0.067 mM. Saturation of [3H]PIA binding revealed that NEM converts the high affinity form of the Ri receptor into a low affinity form. NEM also decreased the potency of agonists to displace [3H]DPX binding, as shown by a 74-fold shift of the Ki-value for (-)PIA, whereas antagonist-induced displacement remained unchanged. In addition, low concentrations of NEM (0.01-0.1 mM) attenuated the (-)PIA-induced inhibition of adenylate cyclase activity of rat fat cells. At higher concentrations (0.1-1 mM) NEM reduced basal and stimulated adenylate cyclase activities in rat fat cells and human platelets, presumably by inactivation of the catalytic unit. Radioligand binding of 5'-N-ethylcarboxamido[3H]-adenosine [( 3H]NECA) to Ra adenosine receptors of human platelet membranes was not changed by NEM at low radioligand concentrations. Saturation analysis of [3H]-NECA binding showed that NEM led to an apparent increase of agonist affinity with a concomitant decrease in total [3H]NECA binding sites. These results suggest that NEM reduces the affinity of Ri adenosine receptors, probably by affecting the inhibitory guanine nucleotide binding protein (Ni), whereas [3H]NECA binding sites are inversely affected.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D010660 Phenylisopropyladenosine N-Isopropyl-N-phenyl-adenosine. Antilipemic agent. Synonym: TH 162. Isopropylphenyladenosine,L-Phenylisopropyladenosine,N(6)-Phenylisopropyl-Adenosine,L Phenylisopropyladenosine
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D011983 Receptors, Purinergic Cell surface proteins that bind PURINES with high affinity and trigger intracellular changes which influence the behavior of cells. The best characterized classes of purinergic receptors in mammals are the P1 receptors, which prefer ADENOSINE, and the P2 receptors, which prefer ATP or ADP. Methyladenine Receptors,Purine Receptors,Purinergic Receptor,Purinergic Receptors,Purinoceptors,Purine Receptor,Purinoceptor,Receptors, Methyladenine,Receptors, Purine,Receptor, Purine,Receptor, Purinergic
D001792 Blood Platelets Non-nucleated disk-shaped cells formed in the megakaryocyte and found in the blood of all mammals. They are mainly involved in blood coagulation. Platelets,Thrombocytes,Blood Platelet,Platelet,Platelet, Blood,Platelets, Blood,Thrombocyte
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D005033 Ethylmaleimide A sulfhydryl reagent that is widely used in experimental biochemical studies. N-Ethylmaleimide,N Ethylmaleimide
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000241 Adenosine A nucleoside that is composed of ADENINE and D-RIBOSE. Adenosine or adenosine derivatives play many important biological roles in addition to being components of DNA and RNA. Adenosine itself is a neurotransmitter. Adenocard,Adenoscan
D000262 Adenylyl Cyclases Enzymes of the lyase class that catalyze the formation of CYCLIC AMP and pyrophosphate from ATP. Adenyl Cyclase,Adenylate Cyclase,3',5'-cyclic AMP Synthetase,Adenylyl Cyclase,3',5' cyclic AMP Synthetase,AMP Synthetase, 3',5'-cyclic,Cyclase, Adenyl,Cyclase, Adenylate,Cyclase, Adenylyl,Cyclases, Adenylyl,Synthetase, 3',5'-cyclic AMP

Related Publications

D Ukena, and E Poeschla, and E Hüttemann, and U Schwabe
August 1984, Naunyn-Schmiedeberg's archives of pharmacology,
D Ukena, and E Poeschla, and E Hüttemann, and U Schwabe
January 1987, The Journal of laboratory and clinical medicine,
D Ukena, and E Poeschla, and E Hüttemann, and U Schwabe
January 1985, Proceedings of the National Academy of Sciences of the United States of America,
D Ukena, and E Poeschla, and E Hüttemann, and U Schwabe
November 1968, Biochimica et biophysica acta,
D Ukena, and E Poeschla, and E Hüttemann, and U Schwabe
January 1989, Toxicology letters,
D Ukena, and E Poeschla, and E Hüttemann, and U Schwabe
April 1999, Biochemical pharmacology,
D Ukena, and E Poeschla, and E Hüttemann, and U Schwabe
December 1986, Brain research,
D Ukena, and E Poeschla, and E Hüttemann, and U Schwabe
January 1988, Archivum immunologiae et therapiae experimentalis,
D Ukena, and E Poeschla, and E Hüttemann, and U Schwabe
August 1989, British journal of pharmacology,
D Ukena, and E Poeschla, and E Hüttemann, and U Schwabe
February 1981, The Journal of clinical endocrinology and metabolism,
Copied contents to your clipboard!