Autoradiographic localization and depolarization-induced release of acidic amino acids in differentiating cerebellar granule cell cultures. 1984

G Levi, and F Aloisi, and M T Ciotti, and V Gallo

Granule cells from 8-day-old rat cerebella were grown in basal Eagle's medium with 10% fetal calf serum, for 2,5,8 or 12 days in vitro (DIV), in conditions giving a purity greater than 90%. The results obtained can be summarized as follows: (1) Light microscopic autoradiography showed that cultured granule cells and their processes can accumulate the glutamate analog [3H]D-aspartate once they have reached an advanced degree of morphological differentiation (8 and 12 DIV), but, even then, only a limited number of cells was heavily labeled. In contrast, astrocytes were heavily labeled at all stages. (2) Calcium-dependent, high [K+]-induced release, or tetrodotoxin-sensitive, veratridine-induced release of [3H]D-aspartate from granule cell-enriched cultures was detectable only in cultures of 8 or 12 DIV. (3) When subject to 3 consecutive depolarizations, cultured granule cells maintained their ability to release [3H]D-aspartate and endogenous glutamate almost unchanged. (4) Newly synthesized [3H]glutamate was autoradiographically localized in both neurons and astrocytes (the latter, however, were not preferentially labeled as with [3H]D-aspartate), but was specifically released from neuronal structures (perikarya and processes) by depolarizing stimuli.

UI MeSH Term Description Entries
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002463 Cell Membrane Permeability A quality of cell membranes which permits the passage of solvents and solutes into and out of cells. Permeability, Cell Membrane
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002531 Cerebellum The part of brain that lies behind the BRAIN STEM in the posterior base of skull (CRANIAL FOSSA, POSTERIOR). It is also known as the "little brain" with convolutions similar to those of CEREBRAL CORTEX, inner white matter, and deep cerebellar nuclei. Its function is to coordinate voluntary movements, maintain balance, and learn motor skills. Cerebella,Corpus Cerebelli,Parencephalon,Cerebellums,Parencephalons
D005971 Glutamates Derivatives of GLUTAMIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the 2-aminopentanedioic acid structure. Glutamic Acid Derivatives,Glutamic Acids,Glutaminic Acids
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001224 Aspartic Acid One of the non-essential amino acids commonly occurring in the L-form. It is found in animals and plants, especially in sugar cane and sugar beets. It may be a neurotransmitter. (+-)-Aspartic Acid,(R,S)-Aspartic Acid,Ammonium Aspartate,Aspartate,Aspartate Magnesium Hydrochloride,Aspartic Acid, Ammonium Salt,Aspartic Acid, Calcium Salt,Aspartic Acid, Dipotassium Salt,Aspartic Acid, Disodium Salt,Aspartic Acid, Hydrobromide,Aspartic Acid, Hydrochloride,Aspartic Acid, Magnesium (1:1) Salt, Hydrochloride, Trihydrate,Aspartic Acid, Magnesium (2:1) Salt,Aspartic Acid, Magnesium-Potassium (2:1:2) Salt,Aspartic Acid, Monopotassium Salt,Aspartic Acid, Monosodium Salt,Aspartic Acid, Potassium Salt,Aspartic Acid, Sodium Salt,Calcium Aspartate,Dipotassium Aspartate,Disodium Aspartate,L-Aspartate,L-Aspartic Acid,Magnesiocard,Magnesium Aspartate,Mg-5-Longoral,Monopotassium Aspartate,Monosodium Aspartate,Potassium Aspartate,Sodium Aspartate,Aspartate, Ammonium,Aspartate, Calcium,Aspartate, Dipotassium,Aspartate, Disodium,Aspartate, Magnesium,Aspartate, Monopotassium,Aspartate, Monosodium,Aspartate, Potassium,Aspartate, Sodium,L Aspartate,L Aspartic Acid
D001253 Astrocytes A class of large neuroglial (macroglial) cells in the central nervous system - the largest and most numerous neuroglial cells in the brain and spinal cord. Astrocytes (from "star" cells) are irregularly shaped with many long processes, including those with "end feet" which form the glial (limiting) membrane and directly and indirectly contribute to the BLOOD-BRAIN BARRIER. They regulate the extracellular ionic and chemical environment, and "reactive astrocytes" (along with MICROGLIA) respond to injury. Astroglia,Astroglia Cells,Astroglial Cells,Astrocyte,Astroglia Cell,Astroglial Cell,Astroglias,Cell, Astroglia,Cell, Astroglial

Related Publications

G Levi, and F Aloisi, and M T Ciotti, and V Gallo
November 1995, Biochemical Society transactions,
G Levi, and F Aloisi, and M T Ciotti, and V Gallo
April 1996, Brain research,
G Levi, and F Aloisi, and M T Ciotti, and V Gallo
May 1988, Brain research,
G Levi, and F Aloisi, and M T Ciotti, and V Gallo
May 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience,
G Levi, and F Aloisi, and M T Ciotti, and V Gallo
May 1982, Brain research,
G Levi, and F Aloisi, and M T Ciotti, and V Gallo
February 2008, Neurochemical research,
G Levi, and F Aloisi, and M T Ciotti, and V Gallo
April 2012, Neurochemical research,
G Levi, and F Aloisi, and M T Ciotti, and V Gallo
November 1985, Neuropharmacology,
Copied contents to your clipboard!