Polyamine amides are neuroprotective in cerebellar granule cell cultures challenged with excitatory amino acids. 1996

A C Green, and K Nakanishi, and P N Usherwood
Department of Life Science, University of Nottingham, University Park, UK.

Primary cultures of rat cerebellar granule cells have been used to assess the potential neuroprotective effects of philanthotoxins and argiotoxin-636 (ArgTX-636). These polyamine amides are potent antagonists of ionotropic L-glutamate (L-Glu) receptors. In granule cells loaded with fluo-3, ArgTX-636 and philanthotoxin-343 (PhTX-343) antagonised increases of intracellular free calcium concentration ([Ca2+]i) that were stimulated by N-methyl-D-aspartate (NMDA). The antagonism was use-dependent. Antagonism by PhTX-343 was fully reversible, but recovery following antagonism by ArgTX-636 was slow and only partial during the time-course of an experiment. Neither compound inhibited K(+)-induced increases in [Ca2+]i. In excitotoxicity studies with cerebellar granule cells, the release of lactate dehydrogenase (LDH) and morphological observations were used to assess cell death. A 20-30 min exposure to 500 microM NMDA, 100 microM L-Glu or 500 microM kainate was sufficient to kill > 90% of the cells after 18-20 h. When added 5 min prior to, and during agonist exposure, PhTX-343 and ArgTX-636 provided total neuroprotection. ArgTX-636 was about 20-30 fold more potent than PhTX-343 against NMDA, but was approximately equipotent with PhTX-343 against a kainate challenge. Neither of the toxins showed any inherent toxicity even at 400 microM and 100 microM respectively. Some analogues of PhTX-343 are more potent, both in terms of antagonism of NMDA-stimulated increases of [Ca2+]i and neuroprotection, than PhTX-343 and ArgTX-636.

UI MeSH Term Description Entries
D007210 Indoleacetic Acids Acetic acid derivatives of the heterocyclic compound indole. (Merck Index, 11th ed) Auxin,Auxins,Indolylacetic Acids,Acids, Indoleacetic,Acids, Indolylacetic
D007608 Kainic Acid (2S-(2 alpha,3 beta,4 beta))-2-Carboxy-4-(1-methylethenyl)-3-pyrrolidineacetic acid. Ascaricide obtained from the red alga Digenea simplex. It is a potent excitatory amino acid agonist at some types of excitatory amino acid receptors and has been used to discriminate among receptor types. Like many excitatory amino acid agonists it can cause neurotoxicity and has been used experimentally for that purpose. Digenic Acid,Kainate,Acid, Digenic,Acid, Kainic
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010636 Phenols Benzene derivatives that include one or more hydroxyl groups attached to the ring structure.
D010648 Phenylacetates Derivatives of phenylacetic acid. Included under this heading are a variety of acid forms, salts, esters, and amides that contain the benzeneacetic acid structure. Note that this class of compounds should not be confused with derivatives of phenyl acetate, which contain the PHENOL ester of ACETIC ACID. Benzeneacetates,Benzeneacetic Acids,Phenylacetic Acids,Acids, Benzeneacetic,Acids, Phenylacetic
D011073 Polyamines Amine compounds that consist of carbon chains or rings containing two or more primary amino groups. Polyamine
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002531 Cerebellum The part of brain that lies behind the BRAIN STEM in the posterior base of skull (CRANIAL FOSSA, POSTERIOR). It is also known as the "little brain" with convolutions similar to those of CEREBRAL CORTEX, inner white matter, and deep cerebellar nuclei. Its function is to coordinate voluntary movements, maintain balance, and learn motor skills. Cerebella,Corpus Cerebelli,Parencephalon,Cerebellums,Parencephalons

Related Publications

A C Green, and K Nakanishi, and P N Usherwood
November 1995, Biochemical Society transactions,
A C Green, and K Nakanishi, and P N Usherwood
September 1990, Canada diseases weekly report = Rapport hebdomadaire des maladies au Canada,
A C Green, and K Nakanishi, and P N Usherwood
January 1986, Functional neurology,
A C Green, and K Nakanishi, and P N Usherwood
January 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience,
A C Green, and K Nakanishi, and P N Usherwood
September 1992, Neuroreport,
A C Green, and K Nakanishi, and P N Usherwood
June 1988, The Journal of physiology,
Copied contents to your clipboard!