Characterization of a somatostatin-28 containing the (Tyr-7, Gly-10) derivative of somatostatin-14: a terminal active product of prosomatostatin II processing in anglerfish pancreatic islets. 1984

A Morel, and P Gluschankof, and S Gomez, and V Fafeur, and P Cohen

Anglerfish (Lophius piscatorius) Brockmann organs contain a form of somatostatin-14, identical to the hypothalamic tetradecapeptide, and two distinct forms of somatostatin-28, which can be separated by reversed-phase high-pressure liquid chromatography (HPLC). Analysis of the NH2-terminal amino acid sequence and comparison of the ability to incorporate 125I indicate that one of these forms corresponds to an octacosapeptide including in its sequence the (Tyr-7, Gly-10) derivative of somatostatin-14 (somatostatin II). Exposure of this somatostatin-28 species to an endopeptidase activity from the rat brain cortex generates a peptide immunologically related to somatostatin and undistinguishable from synthetic (Tyr-7, Gly-10) somatostatin-14 II by HPLC. This somatostatin-28 II exhibits a potent inhibitory effect on growth hormone release by rat anterior pituitary cells, comparable to the other somatostatin-28 form. Since (Tyr-7, Gly-10) somatostatin-14 II cannot be detected in anglerfish pancreatic islets, these results indicate that somatostatin-28 II represents the terminal active product of prosomatostatin II processing, whose structure was predicted from the cDNA nucleotide sequence corresponding to the second mRNA cloned from anglerfish Brockmann organs [Hobart, P., Crawford, R., Shen, L. P., Pictet, R. & Rutter, W. J. (1980) Nature (London) 288, 137-141].

UI MeSH Term Description Entries
D011498 Protein Precursors Precursors, Protein
D011499 Protein Processing, Post-Translational Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility. Amino Acid Modification, Post-Translational,Post-Translational Modification,Post-Translational Protein Modification,Posttranslational Modification,Protein Modification, Post-Translational,Amino Acid Modification, Posttranslational,Post-Translational Amino Acid Modification,Post-Translational Modifications,Post-Translational Protein Processing,Posttranslational Amino Acid Modification,Posttranslational Modifications,Posttranslational Protein Processing,Protein Processing, Post Translational,Protein Processing, Posttranslational,Amino Acid Modification, Post Translational,Modification, Post-Translational,Modification, Post-Translational Protein,Modification, Posttranslational,Modifications, Post-Translational,Modifications, Post-Translational Protein,Modifications, Posttranslational,Post Translational Amino Acid Modification,Post Translational Modification,Post Translational Modifications,Post Translational Protein Modification,Post Translational Protein Processing,Post-Translational Protein Modifications,Processing, Post-Translational Protein,Processing, Posttranslational Protein,Protein Modification, Post Translational,Protein Modifications, Post-Translational
D005399 Fishes A group of cold-blooded, aquatic vertebrates having gills, fins, a cartilaginous or bony endoskeleton, and elongated bodies covered with scales.
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013004 Somatostatin A 14-amino acid peptide named for its ability to inhibit pituitary GROWTH HORMONE release, also called somatotropin release-inhibiting factor. It is expressed in the central and peripheral nervous systems, the gut, and other organs. SRIF can also inhibit the release of THYROID-STIMULATING HORMONE; PROLACTIN; INSULIN; and GLUCAGON besides acting as a neurotransmitter and neuromodulator. In a number of species including humans, there is an additional form of somatostatin, SRIF-28 with a 14-amino acid extension at the N-terminal. Cyclic Somatostatin,Somatostatin-14,Somatotropin Release-Inhibiting Hormone,SRIH-14,Somatofalk,Somatostatin, Cyclic,Somatotropin Release-Inhibiting Factor,Stilamin,Somatostatin 14,Somatotropin Release Inhibiting Factor,Somatotropin Release Inhibiting Hormone
D053561 Somatostatin-28 A 28-amino acid peptide with the same biological activities of somatostatin-14 but with a 14-amino acid extension at the N-terminal. SRIF-28 is the major form of somatostatin in the GASTROINTESTINAL TRACT. Somatostatin 28

Related Publications

A Morel, and P Gluschankof, and S Gomez, and V Fafeur, and P Cohen
October 1986, Biochemical and biophysical research communications,
A Morel, and P Gluschankof, and S Gomez, and V Fafeur, and P Cohen
January 1985, Advances in experimental medicine and biology,
A Morel, and P Gluschankof, and S Gomez, and V Fafeur, and P Cohen
January 1985, Proceedings of the National Academy of Sciences of the United States of America,
A Morel, and P Gluschankof, and S Gomez, and V Fafeur, and P Cohen
August 1990, Biochemical and biophysical research communications,
A Morel, and P Gluschankof, and S Gomez, and V Fafeur, and P Cohen
December 1979, Endocrinology,
A Morel, and P Gluschankof, and S Gomez, and V Fafeur, and P Cohen
May 1980, Proceedings of the National Academy of Sciences of the United States of America,
A Morel, and P Gluschankof, and S Gomez, and V Fafeur, and P Cohen
October 1997, Neuropeptides,
A Morel, and P Gluschankof, and S Gomez, and V Fafeur, and P Cohen
August 1996, Tissue & cell,
Copied contents to your clipboard!