Somatostatin-14, somatostatin-28, and prosomatostatin[1-10] are independently and efficiently processed from prosomatostatin in the constitutive secretory pathway in islet somatostatin tumor cells (1027B2). 1997

Y C Patel, and A S Galanopoulou, and S N Rabbani, and J L Liu, and M Ravazzola, and M Amherdt
McGill University, Department of Medicine, Royal Victoria Hospital and Montreal Neurological Institute, Quebec, Canada. MDYP@Musica.McGill.Ca

We have characterized the biosynthetic origin of somatostatin-14 (SS-14), SS-28, and pro-SS[1-10] from pro-SS (PSS) in 1027B2 rat islet tumor cells. Because these cells lack regulated secretion and show unresponsiveness of the SS gene to cAMP, we have additionally carried out morphological and functional studies to elucidate the molecular defect in cAMP signalling and to localize the sites of PSS maturation along the secretory pathway. Cell extracts and secretion media were analysed by high performance liquid chromatography and specific C- and N-terminal radioimmunoassays. Electron microscopic sampling of 1027B2 cell cultures showed that most cells had very few dense core secretory granules for heterogeneous sizes. The cells expressed the endoproteases furin, PC1, and PC2 and contained large quantities of fully processed SS-14 and SS-28 with very little unprocessed PSS (ratio SS-14:SS-28:PSS = 39:51:10%). They secreted high concentrations of SS-14, SS-28, and PSS[1-10] constitutively along with PC1 and PC2. Pulse-chase studies demonstrated that PSS is rapidly (within 15 min), and efficiently processed to SS-14, SS-28, and PSS[1-10] via separate biosynthetic pathways: PSS --> SS-14 + 8 kDa; PSS --> SS-28 + 7 kDa; PSS --> PSS[1-10]. Monensin reduced intracellular SS-like immunoreactivity without altering processing efficiency. Transfection with the catalytic subunit of protein kinase A (PKA-C) activated SS promoter-CAT activating indicating that the defect in cAMP-dependent signaling in 1027B2 cells lies at the level of PKA-C. PKA-C overexpression failed to alter the ratio of processed SS-14 and SS-28. These results demonstrate that SS-14, SS-28, and PSS[1-10] are independently synthesized from PSS and that efficient precursor processing can occur within the constitutive secretory pathway in the relative absence of dense core secretory vesicles.

UI MeSH Term Description Entries
D007516 Adenoma, Islet Cell A benign tumor of the pancreatic ISLET CELLS. Usually it involves the INSULIN-producing PANCREATIC BETA CELLS, as in INSULINOMA, resulting in HYPERINSULINISM. Islet Cell Tumor,Islet of Langerhans Tumor,Nesidioblastoma,Pancreatic Islet Cell Tumors,Island Cell Tumor,Adenomas, Islet Cell,Island Cell Tumors,Islet Cell Adenoma,Islet Cell Adenomas,Islet Cell Tumors,Langerhans Tumor Islet,Nesidioblastomas,Tumor Islet, Langerhans,Tumor, Island Cell,Tumor, Islet Cell,Tumors, Island Cell,Tumors, Islet Cell
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008985 Monensin An antiprotozoal agent produced by Streptomyces cinnamonensis. It exerts its effect during the development of first-generation trophozoites into first-generation schizonts within the intestinal epithelial cells. It does not interfere with hosts' development of acquired immunity to the majority of coccidial species. Monensin is a sodium and proton selective ionophore and is widely used as such in biochemical studies. Coban,Monensin Monosodium Salt,Monensin Sodium,Monensin-A-Sodium Complex,Rumensin,Monensin A Sodium Complex
D010190 Pancreatic Neoplasms Tumors or cancer of the PANCREAS. Depending on the types of ISLET CELLS present in the tumors, various hormones can be secreted: GLUCAGON from PANCREATIC ALPHA CELLS; INSULIN from PANCREATIC BETA CELLS; and SOMATOSTATIN from the SOMATOSTATIN-SECRETING CELLS. Most are malignant except the insulin-producing tumors (INSULINOMA). Cancer of Pancreas,Pancreatic Cancer,Cancer of the Pancreas,Neoplasms, Pancreatic,Pancreas Cancer,Pancreas Neoplasms,Pancreatic Acinar Carcinoma,Pancreatic Carcinoma,Acinar Carcinoma, Pancreatic,Acinar Carcinomas, Pancreatic,Cancer, Pancreas,Cancer, Pancreatic,Cancers, Pancreas,Cancers, Pancreatic,Carcinoma, Pancreatic,Carcinoma, Pancreatic Acinar,Carcinomas, Pancreatic,Carcinomas, Pancreatic Acinar,Neoplasm, Pancreas,Neoplasm, Pancreatic,Neoplasms, Pancreas,Pancreas Cancers,Pancreas Neoplasm,Pancreatic Acinar Carcinomas,Pancreatic Cancers,Pancreatic Carcinomas,Pancreatic Neoplasm
D011498 Protein Precursors Precursors, Protein
D003594 Cytoplasmic Granules Condensed areas of cellular material that may be bounded by a membrane. Cytoplasmic Granule,Granule, Cytoplasmic,Granules, Cytoplasmic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D013004 Somatostatin A 14-amino acid peptide named for its ability to inhibit pituitary GROWTH HORMONE release, also called somatotropin release-inhibiting factor. It is expressed in the central and peripheral nervous systems, the gut, and other organs. SRIF can also inhibit the release of THYROID-STIMULATING HORMONE; PROLACTIN; INSULIN; and GLUCAGON besides acting as a neurotransmitter and neuromodulator. In a number of species including humans, there is an additional form of somatostatin, SRIF-28 with a 14-amino acid extension at the N-terminal. Cyclic Somatostatin,Somatostatin-14,Somatotropin Release-Inhibiting Hormone,SRIH-14,Somatofalk,Somatostatin, Cyclic,Somatotropin Release-Inhibiting Factor,Stilamin,Somatostatin 14,Somatotropin Release Inhibiting Factor,Somatotropin Release Inhibiting Hormone

Related Publications

Y C Patel, and A S Galanopoulou, and S N Rabbani, and J L Liu, and M Ravazzola, and M Amherdt
August 1996, Tissue & cell,
Y C Patel, and A S Galanopoulou, and S N Rabbani, and J L Liu, and M Ravazzola, and M Amherdt
November 1994, Biochemical and biophysical research communications,
Y C Patel, and A S Galanopoulou, and S N Rabbani, and J L Liu, and M Ravazzola, and M Amherdt
August 1993, Regulatory peptides,
Y C Patel, and A S Galanopoulou, and S N Rabbani, and J L Liu, and M Ravazzola, and M Amherdt
November 1987, The Journal of clinical investigation,
Y C Patel, and A S Galanopoulou, and S N Rabbani, and J L Liu, and M Ravazzola, and M Amherdt
November 1984, Proceedings of the National Academy of Sciences of the United States of America,
Y C Patel, and A S Galanopoulou, and S N Rabbani, and J L Liu, and M Ravazzola, and M Amherdt
October 1984, Brain research,
Y C Patel, and A S Galanopoulou, and S N Rabbani, and J L Liu, and M Ravazzola, and M Amherdt
July 1985, Endocrinology,
Y C Patel, and A S Galanopoulou, and S N Rabbani, and J L Liu, and M Ravazzola, and M Amherdt
July 1983, The Journal of biological chemistry,
Y C Patel, and A S Galanopoulou, and S N Rabbani, and J L Liu, and M Ravazzola, and M Amherdt
October 1997, Neuropeptides,
Copied contents to your clipboard!