Physiology and morphology of substantia gelatinosa neurons intracellularly stained with horseradish peroxidase. 1980

G J Bennett, and M Abdelmoumene, and H Hayashi, and R Dubner

Neurons in Rexed's layer II were physiologically characterized with natural and electrical stimuli applied to their cutaneous receptive fields. The neurons were then intracellularly stained with horseradish peroxidase. Three general patterns of physiological responses were found. Nociceptive specific neurons did not respond to gentle mechanical stimulation. Most responded exclusively to tissue-damaging stimuli. Some also responded to moderately heavy pressure, but these responded to noxious stimuli with an increased discharge frequency. Wide dynamic range neurons responded to both gentle mechanical stimulation and to tissue-damaging stimulation. Low-threshold mechanoreceptive neurons responded only to gentle mechanical stimulation. Some of the low-threshold mechanoreceptive neurons were innervated by primary afferents with unmyelinated axons. Excepting those low-threshold mechanoreceptive neurons with input from unmyelinated afferents, the patterns of primary afferents innervation of layer II neurons were similar to the patterns of innervation that have been found for neurons in layers I and IV-V. All but 2 of the 22 neurons that we found were recognized as being of two general morphological types. Stalked cells had their perikarya situated along the superficial border of layer II. Most of their dendrites traveled ventrally while spreading out rostrocaudally. This gave their dendritic arbors a fan-like shape. Stalked cell axons arborized largely in layer I. Islet cell perikarya were found throughout layer II. Most of their dendrites traveled rostrocaudally. Their dendritic arbors were shaped like cylinders with their long axes parallel to the long axis of the spinal cord. Islet cell axons arborized in the immediate vicinity of their dendritic territories, within layer II. Stalked cells and those islet cells whose dendritic arbors were largely contained within the superficial one-third of layer II (layer IIa) were either nociceptive specific or wide dynamic range neurons. The islet cells whose dendritic arbors were largely within the deeper two-thirds of layer II (layer IIb) were all low-threshold mechanoreceptive neurons. These observations suggest that layers IIa and IIb have different functional roles and that stalked cells and islet cells are separate and distinct components of the neural circuitry of the superficial dorsal horn.

UI MeSH Term Description Entries
D007395 Interneurons Most generally any NEURONS which are not motor or sensory. Interneurons may also refer to neurons whose AXONS remain within a particular brain region in contrast to projection neurons, which have axons projecting to other brain regions. Intercalated Neurons,Intercalated Neuron,Interneuron,Neuron, Intercalated,Neurons, Intercalated
D008297 Male Males
D008465 Mechanoreceptors Cells specialized to transduce mechanical stimuli and relay that information centrally in the nervous system. Mechanoreceptor cells include the INNER EAR hair cells, which mediate hearing and balance, and the various somatosensory receptors, often with non-neural accessory structures. Golgi Tendon Organ,Golgi Tendon Organs,Krause's End Bulb,Krause's End Bulbs,Mechanoreceptor,Mechanoreceptor Cell,Meissner's Corpuscle,Neurotendinous Spindle,Neurotendinous Spindles,Receptors, Stretch,Ruffini's Corpuscle,Ruffini's Corpuscles,Stretch Receptor,Stretch Receptors,Mechanoreceptor Cells,Bulb, Krause's End,Bulbs, Krause's End,Cell, Mechanoreceptor,Cells, Mechanoreceptor,Corpuscle, Meissner's,Corpuscle, Ruffini's,Corpuscles, Ruffini's,End Bulb, Krause's,End Bulbs, Krause's,Krause End Bulb,Krause End Bulbs,Krauses End Bulb,Krauses End Bulbs,Meissner Corpuscle,Meissners Corpuscle,Organ, Golgi Tendon,Organs, Golgi Tendon,Receptor, Stretch,Ruffini Corpuscle,Ruffini Corpuscles,Ruffinis Corpuscle,Ruffinis Corpuscles,Spindle, Neurotendinous,Spindles, Neurotendinous,Tendon Organ, Golgi,Tendon Organs, Golgi
D009619 Nociceptors Peripheral AFFERENT NEURONS which are sensitive to injuries or pain, usually caused by extreme thermal exposures, mechanical forces, or other noxious stimuli. Their cell bodies reside in the DORSAL ROOT GANGLIA. Their peripheral terminals (NERVE ENDINGS) innervate target tissues and transduce noxious stimuli via axons to the CENTRAL NERVOUS SYSTEM. Pain Receptors,Receptors, Pain,Nociceptive Neurons,Neuron, Nociceptive,Neurons, Nociceptive,Nociceptive Neuron,Nociceptor,Pain Receptor
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D006735 Horseradish Peroxidase An enzyme isolated from horseradish which is able to act as an antigen. It is frequently used as a histochemical tracer for light and electron microscopy. Its antigenicity has permitted its use as a combined antigen and marker in experimental immunology. Alpha-Peroxidase,Ferrihorseradish Peroxidase,Horseradish Peroxidase II,Horseradish Peroxidase III,Alpha Peroxidase,II, Horseradish Peroxidase,III, Horseradish Peroxidase,Peroxidase II, Horseradish,Peroxidase III, Horseradish,Peroxidase, Ferrihorseradish,Peroxidase, Horseradish
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012867 Skin The outer covering of the body that protects it from the environment. It is composed of the DERMIS and the EPIDERMIS.

Related Publications

G J Bennett, and M Abdelmoumene, and H Hayashi, and R Dubner
July 1987, Brain research,
G J Bennett, and M Abdelmoumene, and H Hayashi, and R Dubner
January 1986, The Journal of comparative neurology,
G J Bennett, and M Abdelmoumene, and H Hayashi, and R Dubner
November 1986, The Journal of comparative neurology,
G J Bennett, and M Abdelmoumene, and H Hayashi, and R Dubner
January 1985, The Journal of comparative neurology,
G J Bennett, and M Abdelmoumene, and H Hayashi, and R Dubner
October 1977, Brain research,
G J Bennett, and M Abdelmoumene, and H Hayashi, and R Dubner
March 1999, The Journal of comparative neurology,
G J Bennett, and M Abdelmoumene, and H Hayashi, and R Dubner
January 1992, Neuroscience,
G J Bennett, and M Abdelmoumene, and H Hayashi, and R Dubner
May 1984, Brain research,
G J Bennett, and M Abdelmoumene, and H Hayashi, and R Dubner
April 1981, The Journal of comparative neurology,
Copied contents to your clipboard!