Rat liver microsomes catalyse mannosyl transfer from GDP-D-mannose to retinyl phosphate with high efficiency in the absence of detergents. 1981

Y Shidoji, and L M De Luca

In the absence of detergent, the transfer of mannose from GDP-mannose to rat liver microsomal vesicles was highly stimulated by exogenous retinyl phosphate in incubations containing bovine serum albumin, as measured in a filter binding assay. Under these conditions 65% of mannose 6-phosphatase activity was latent. The transfer process was linear with time up to 5min and with protein concentration up to 1.5mg/0.2ml. It was also temperature-dependent. The microsomal uptake of mannose was highly dependent on retinyl phosphate and was saturable against increasing amounts of retinyl phosphate, a concentration of 15mum giving half-maximal transfer. The uptake system was also saturated by increasing concentrations of GDP-mannose, with an apparent K(m) of 18mum. Neither exogenous dolichyl phosphate nor non-phosphorylated retinoids were active in this process in the absence of detergent. Phosphatidylethanolamine and synthetic dipalmitoylglycerophosphocholine were also without activity. Several water-soluble organic phosphates (1.5mm), such as phenyl phosphate, 4-nitrophenyl phosphate, phosphoserine and phosphocholine, did not inhibit the retinyl phosphate-stimulated mannosyl transfer to microsomes. This mannosyl-transfer activity was highest in microsomes and marginal in mitochondria, plasma and nuclear membranes. It was specific for mannose residues from GDP-mannose and did not occur with UDP-[(3)H]galactose, UDP- or GDP-[(14)C]glucose, UDP-N-acetyl[(14)C]-glucosamine and UDP-N-acetyl[(14)C]galactosamine, all at 24mum. The mannosyl transfer was inhibited 85% by 3mm-EDTA and 93% by 0.8mm-amphomycin. At 2min, 90% of the radioactivity retained on the filter could be extracted with chloroform/methanol (2:1, v/v) and mainly co-migrated with retinyl phosphate mannose by t.l.c. This mannolipid was shown to bind to immunoglobulin G fraction of anti-(vitamin A) serum and was displaced by a large excess of retinoic acid, thus confirming the presence of the beta-ionone ring in the mannolipid. The amount of retinyl phosphate mannose formed in the bovine serum albumin/retinyl phosphate incubation is about 100-fold greater than in incubations containing 0.5% Triton X-100. In contrast with the lack of activity as a mannosyl acceptor for exogenous dolichyl phosphate in the present assay system, endogenous dolichyl phosphate clearly functions as an acceptor. Moreover in the same incubations a mannolipid with chromatographic properties of retinyl phosphate mannose was also synthesized from endogenous lipid acceptor. The biosynthesis of this mannolipid (retinyl phosphate mannose) was optimal at MnCl(2) concentrations between 5 and 10mm and could not be detected below 0.6mm-MnCl(2), when synthesis of dolichyl phosphate mannose from endogenous dolichyl phosphate was about 80% of optimal synthesis. Under optimal conditions (5mm-MnCl(2)) endogenous retinyl phosphate mannose represented about 20% of dolichyl phosphate mannose at 15min of incubation at 37 degrees C.

UI MeSH Term Description Entries
D007106 Immune Sera Serum that contains antibodies. It is obtained from an animal that has been immunized either by ANTIGEN injection or infection with microorganisms containing the antigen. Antisera,Immune Serums,Sera, Immune,Serums, Immune
D008297 Male Males
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D009702 Nucleoside Diphosphate Sugars Diphosphate Sugars, Nucleoside,Sugars, Nucleoside Diphosphate
D011092 Polyethylene Glycols Polymers of ETHYLENE OXIDE and water, and their ethers. They vary in consistency from liquid to solid depending on the molecular weight indicated by a number following the name. They are used as SURFACTANTS, dispersing agents, solvents, ointment and suppository bases, vehicles, and tablet excipients. Some specific groups are NONOXYNOLS, OCTOXYNOLS, and POLOXAMERS. Macrogols,Polyoxyethylenes,Carbowax,Macrogol,Polyethylene Glycol,Polyethylene Oxide,Polyethyleneoxide,Polyglycol,Glycol, Polyethylene,Glycols, Polyethylene,Oxide, Polyethylene,Oxides, Polyethylene,Polyethylene Oxides,Polyethyleneoxides,Polyglycols,Polyoxyethylene
D011103 Polyisoprenyl Phosphate Monosaccharides These compounds function as activated monosaccharide carriers in the biosynthesis of glycoproteins and oligosaccharide phospholipids. Obtained from a nucleoside diphosphate sugar and a polyisoprenyl phosphate. Isoprenoid Phosphate Monosaccharides,Monosaccharides, Isoprenoid Phosphate,Monosaccharides, Polyisoprenyl Phosphate,Phosphate Monosaccharides, Isoprenoid,Phosphate Monosaccharides, Polyisoprenyl
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D003902 Detergents Purifying or cleansing agents, usually salts of long-chain aliphatic bases or acids, that exert cleansing (oil-dissolving) and antimicrobial effects through a surface action that depends on possessing both hydrophilic and hydrophobic properties. Cleansing Agents,Detergent Pods,Laundry Detergent Pods,Laundry Pods,Syndet,Synthetic Detergent,Agent, Cleansing,Agents, Cleansing,Cleansing Agent,Detergent,Detergent Pod,Detergent Pod, Laundry,Detergent Pods, Laundry,Detergent, Synthetic,Detergents, Synthetic,Laundry Detergent Pod,Laundry Pod,Pod, Detergent,Pod, Laundry,Pod, Laundry Detergent,Pods, Detergent,Pods, Laundry,Pods, Laundry Detergent,Synthetic Detergents
D004224 Diterpenes Twenty-carbon compounds derived from MEVALONIC ACID or deoxyxylulose phosphate. Diterpene,Diterpenes, Cembrane,Diterpenes, Labdane,Diterpenoid,Labdane Diterpene,Norditerpene,Norditerpenes,Norditerpenoid,Cembranes,Diterpenoids,Labdanes,Norditerpenoids,Cembrane Diterpenes,Diterpene, Labdane,Labdane Diterpenes

Related Publications

Y Shidoji, and L M De Luca
September 1977, Proceedings of the National Academy of Sciences of the United States of America,
Y Shidoji, and L M De Luca
October 1976, The Journal of biological chemistry,
Y Shidoji, and L M De Luca
November 1979, Archives of biochemistry and biophysics,
Y Shidoji, and L M De Luca
May 1980, Proceedings of the National Academy of Sciences of the United States of America,
Y Shidoji, and L M De Luca
July 1980, Analytical biochemistry,
Copied contents to your clipboard!