Role of substance P as a sensory transmitter in spinal cord and sympathetic ganglia. 1982

M Otsuka, and S Konishi, and M Yanagisawa, and A Tsunoo, and H Akagi

The hypothesis that substance P (SP) might be a transmitter of primary sensory neurons was first proposed by Lembeck in 1953. A large amount of evidence supporting this hypothesis has recently accumulated, particularly since the elucidation of the chemical structure of SP by Leeman and her colleagues in 1971, which made a number of new approaches possible (e.g. radioimmunoassay for SP, immunohistochemistry and electrophysiological tests of SP action on central and peripheral neurons). SP is concentrated in certain primary afferent terminals in the spinal cord, is released therefrom when the dorsal roots are electrically stimulated, and exerts a powerful excitant action on spinal neurons. It is therefore likely that SP produces excitatory postsynaptic potentials (EPSPs) in spinal neurons, although the characteristics of SP-mediated EPSPs, i.e. their time course, ionic mechanisms, etc., remain to be revealed. Recent electrophysiological and neurochemical studies on the prevertebral ganglia of the guinea-pig strongly suggest that SP is released from axon collaterals of visceral primary afferent neurons in the ganglia and serves as a transmitter that generates non-cholinergic slow EPSPs in principal cells. There is evidence that this SP-mediated synaptic transmission in the sympathetic ganglia is under the influence of enkephalinergic presynaptic inhibition. Some preliminary experiments on the interaction between SP and enkephalins in the spinal cord are described.

UI MeSH Term Description Entries
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009475 Neurons, Afferent Neurons which conduct NERVE IMPULSES to the CENTRAL NERVOUS SYSTEM. Afferent Neurons,Afferent Neuron,Neuron, Afferent
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002211 Capsaicin An alkylamide found in CAPSICUM that acts at TRPV CATION CHANNELS. 8-Methyl-N-Vanillyl-6-Nonenamide,Antiphlogistine Rub A-535 Capsaicin,Axsain,Capsaicine,Capsicum Farmaya,Capsidol,Capsin,Capzasin,Gelcen,Katrum,NGX-4010,Zacin,Zostrix,8 Methyl N Vanillyl 6 Nonenamide,NGX 4010,NGX4010
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D004745 Enkephalins One of the three major families of endogenous opioid peptides. The enkephalins are pentapeptides that are widespread in the central and peripheral nervous systems and in the adrenal medulla. Enkephalin
D005728 Ganglia, Sympathetic Ganglia of the sympathetic nervous system including the paravertebral and the prevertebral ganglia. Among these are the sympathetic chain ganglia, the superior, middle, and inferior cervical ganglia, and the aorticorenal, celiac, and stellate ganglia. Celiac Ganglia,Sympathetic Ganglia,Celiac Ganglion,Ganglion, Sympathetic,Ganglia, Celiac,Ganglion, Celiac,Sympathetic Ganglion
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential

Related Publications

M Otsuka, and S Konishi, and M Yanagisawa, and A Tsunoo, and H Akagi
August 1982, Science (New York, N.Y.),
M Otsuka, and S Konishi, and M Yanagisawa, and A Tsunoo, and H Akagi
November 1987, Neuroscience letters,
M Otsuka, and S Konishi, and M Yanagisawa, and A Tsunoo, and H Akagi
November 1976, Lancet (London, England),
M Otsuka, and S Konishi, and M Yanagisawa, and A Tsunoo, and H Akagi
February 1977, No to shinkei = Brain and nerve,
M Otsuka, and S Konishi, and M Yanagisawa, and A Tsunoo, and H Akagi
February 1963, Annals of the New York Academy of Sciences,
M Otsuka, and S Konishi, and M Yanagisawa, and A Tsunoo, and H Akagi
December 1981, Science (New York, N.Y.),
M Otsuka, and S Konishi, and M Yanagisawa, and A Tsunoo, and H Akagi
June 1983, Neuroscience,
M Otsuka, and S Konishi, and M Yanagisawa, and A Tsunoo, and H Akagi
September 1983, Neuroscience,
M Otsuka, and S Konishi, and M Yanagisawa, and A Tsunoo, and H Akagi
January 1980, Annual review of neuroscience,
M Otsuka, and S Konishi, and M Yanagisawa, and A Tsunoo, and H Akagi
October 1984, Brain research,
Copied contents to your clipboard!