Monoclonal antibody against diphtheria toxin. Effect on toxin binding and entry into cells. 1983

S Hayakawa, and T Uchida, and E Mekada, and M R Moynihan, and Y Okada

A number of monoclonal antibodies against diphtheria toxin were isolated. Some of their properties were determined. Antibody 2 reacts with the region of between 30 and 45 kDa from the NH2 terminus of toxin. Antibody 7 reacts with the COOH-terminal 17-kDa region of toxin. These two antibodies show sharp contrasts in their effects on toxin action in cultured cells. When antibody 2 or 7 and toxin were mixed, incubated at 37 degrees C, and then added to sensitive Vero cells, antibody 7 blocked toxin action, but antibody 2 did not. When antibody 2 or 7 was added to cells to which toxin had been prebound at 4 degrees C, and the cells were then shifted to 37 degrees C, antibody 7 did not block toxin action, but antibody 2 inhibited intoxication. Antibody 7 blocked binding of 125I-toxin to cells and did not block degradation of toxin associated with cells. Antibody 2 did not block binding of 125I-toxin to cells, and was able to bind to cells in the presence of toxin. The results obtained from the effect of antibody 2 on degradation of 125I-toxin associated with cells resemble those seen with amines, which block toxin action but do not inhibit binding of toxin to cells. These facts show that antibody 2 does not block binding of toxin to cell surfaces, but blocks the entry of toxin into the cytosol at a step after binding of toxin to the receptor. Antibodies 14 and 15 react with fragment A of diphtheria toxin, but have no effect on any activity of toxin. The other monoclonal antibodies have effects on toxin binding and entry intermediate between those of 2 and 7.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004167 Diphtheria Toxin An ADP-ribosylating polypeptide produced by CORYNEBACTERIUM DIPHTHERIAE that causes the signs and symptoms of DIPHTHERIA. It can be broken into two unequal domains: the smaller, catalytic A domain is the lethal moiety and contains MONO(ADP-RIBOSE) TRANSFERASES which transfers ADP RIBOSE to PEPTIDE ELONGATION FACTOR 2 thereby inhibiting protein synthesis; and the larger B domain that is needed for entry into cells. Corynebacterium Diphtheriae Toxin,Toxin, Corynebacterium Diphtheriae
D006825 Hybridomas Cells artificially created by fusion of activated lymphocytes with neoplastic cells. The resulting hybrid cells are cloned and produce pure MONOCLONAL ANTIBODIES or T-cell products, identical to those produced by the immunologically competent parent cell. Hybridoma
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000911 Antibodies, Monoclonal Antibodies produced by a single clone of cells. Monoclonal Antibodies,Monoclonal Antibody,Antibody, Monoclonal
D000936 Antigen-Antibody Complex The complex formed by the binding of antigen and antibody molecules. The deposition of large antigen-antibody complexes leading to tissue damage causes IMMUNE COMPLEX DISEASES. Immune Complex,Antigen-Antibody Complexes,Immune Complexes,Antigen Antibody Complex,Antigen Antibody Complexes,Complex, Antigen-Antibody,Complex, Immune,Complexes, Antigen-Antibody,Complexes, Immune
D000939 Epitopes Sites on an antigen that interact with specific antibodies. Antigenic Determinant,Antigenic Determinants,Antigenic Specificity,Epitope,Determinant, Antigenic,Determinants, Antigenic,Specificity, Antigenic
D014176 Protein Biosynthesis The biosynthesis of PEPTIDES and PROTEINS on RIBOSOMES, directed by MESSENGER RNA, via TRANSFER RNA that is charged with standard proteinogenic AMINO ACIDS. Genetic Translation,Peptide Biosynthesis, Ribosomal,Protein Translation,Translation, Genetic,Protein Biosynthesis, Ribosomal,Protein Synthesis, Ribosomal,Ribosomal Peptide Biosynthesis,mRNA Translation,Biosynthesis, Protein,Biosynthesis, Ribosomal Peptide,Biosynthesis, Ribosomal Protein,Genetic Translations,Ribosomal Protein Biosynthesis,Ribosomal Protein Synthesis,Synthesis, Ribosomal Protein,Translation, Protein,Translation, mRNA,mRNA Translations

Related Publications

S Hayakawa, and T Uchida, and E Mekada, and M R Moynihan, and Y Okada
April 1984, Experimental cell research,
S Hayakawa, and T Uchida, and E Mekada, and M R Moynihan, and Y Okada
September 1991, The Journal of biological chemistry,
S Hayakawa, and T Uchida, and E Mekada, and M R Moynihan, and Y Okada
January 1989, Toxicon : official journal of the International Society on Toxinology,
S Hayakawa, and T Uchida, and E Mekada, and M R Moynihan, and Y Okada
December 1980, The Journal of cell biology,
S Hayakawa, and T Uchida, and E Mekada, and M R Moynihan, and Y Okada
November 1984, Infection and immunity,
S Hayakawa, and T Uchida, and E Mekada, and M R Moynihan, and Y Okada
February 1991, Seminars in cell biology,
S Hayakawa, and T Uchida, and E Mekada, and M R Moynihan, and Y Okada
January 1985, Survey and synthesis of pathology research,
S Hayakawa, and T Uchida, and E Mekada, and M R Moynihan, and Y Okada
September 1979, Infection and immunity,
S Hayakawa, and T Uchida, and E Mekada, and M R Moynihan, and Y Okada
February 1985, Journal of cellular physiology,
Copied contents to your clipboard!