2',5'-Oligoadenylates and related 2',5'-oligonucleotide analogues. 1. Substrate specificity of the interferon-induced murine 2',5'-oligoadenylate synthetase and enzymatic synthesis of oligomers. 1983

B G Hughes, and P C Srivastava, and D D Muse, and R K Robins

The substrate specificity of the interferon-induced mouse L-cell enzyme, 2',5'-oligoadenylate synthetase, was determined with a number of nucleoside 5'-triphosphate analogues. Selected nucleoside 5'-triphosphates were converted to 2',5'-oligonucleotides with the following order of efficiency for the nucleoside: 8-azaadenosine greater than adenosine = 2-chloroadenosine greater than sangivamycin greater than toyocamycin greater than formycin greater than 3-ribosyladenine greater than ribavirin greater than tubercidin greater than adenosine 1-oxide greater than 2-beta-D-ribofuranosylthiazole-4-carboxamide greater than inosine = 1,N6-ethenoadenosine greater than guanosine greater than 8-bromoadenosine = uridine greater than cytidine. Adenosine 5'-((beta, gamma-imidotriphosphate) did not seem to be a recognizable substrate since no detectable product resulted. Either the 2',5'-oligoadenylate synthetase is not as specific as had been previously thought, or there may be more than one 2',5'-oligonucleotide synthetase. The 2',5'-oligonucleotide analogue products in which the adenosine of ppp(A2'P5')nA was replaced by the various nucleoside analogues were separated by DEAE-cellulose column chromatography and the chain length and number of 5'-phosphate residues analyzed by a rapid, efficient high-performance liquid chromatographic (HPLC) system involving ion-pairing C18 reversed-phase column chromatography. Separation of the 5'-mono-, 5'-di-, and 5'-triphosphorylated forms of the 2',5'-oligonucleotide analogue dimers, trimers, tetramers, and pentamers was readily achieved by this useful HPLC system. No 5'-nonphosphorylated forms were detected for any of the 2',5'-oligonucleotide analogue products.

UI MeSH Term Description Entries
D007372 Interferons Proteins secreted by vertebrate cells in response to a wide variety of inducers. They confer resistance against many different viruses, inhibit proliferation of normal and malignant cells, impede multiplication of intracellular parasites, enhance macrophage and granulocyte phagocytosis, augment natural killer cell activity, and show several other immunomodulatory functions. Interferon
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009841 Oligonucleotides Polymers made up of a few (2-20) nucleotides. In molecular genetics, they refer to a short sequence synthesized to match a region where a mutation is known to occur, and then used as a probe (OLIGONUCLEOTIDE PROBES). (Dorland, 28th ed) Oligonucleotide
D009843 Oligoribonucleotides A group of ribonucleotides (up to 12) in which the phosphate residues of each ribonucleotide act as bridges in forming diester linkages between the ribose moieties.
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D000227 Adenine Nucleotides Adenine Nucleotide,Adenosine Phosphate,Adenosine Phosphates,Nucleotide, Adenine,Nucleotides, Adenine,Phosphate, Adenosine,Phosphates, Adenosine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012265 Ribonucleotides Nucleotides in which the purine or pyrimidine base is combined with ribose. (Dorland, 28th ed) Ribonucleoside Phosphates,Ribonucleotide,Phosphates, Ribonucleoside
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities

Related Publications

B G Hughes, and P C Srivastava, and D D Muse, and R K Robins
August 1980, Proceedings of the National Academy of Sciences of the United States of America,
B G Hughes, and P C Srivastava, and D D Muse, and R K Robins
April 1999, Journal of interferon & cytokine research : the official journal of the International Society for Interferon and Cytokine Research,
B G Hughes, and P C Srivastava, and D D Muse, and R K Robins
January 1994, Progress in molecular and subcellular biology,
B G Hughes, and P C Srivastava, and D D Muse, and R K Robins
December 2014, Journal of virology,
B G Hughes, and P C Srivastava, and D D Muse, and R K Robins
May 2000, Molecular biology and evolution,
B G Hughes, and P C Srivastava, and D D Muse, and R K Robins
January 1981, Texas reports on biology and medicine,
B G Hughes, and P C Srivastava, and D D Muse, and R K Robins
July 2002, Cellular and molecular life sciences : CMLS,
B G Hughes, and P C Srivastava, and D D Muse, and R K Robins
May 1988, The EMBO journal,
B G Hughes, and P C Srivastava, and D D Muse, and R K Robins
November 1980, Biochemistry,
Copied contents to your clipboard!