In vitro metabolism of deoxycoformycin in human T lymphoblastoid cells. Phosphorylation of deoxycoformycin and incorporation into cellular DNA. 1984

M F Siaw, and M S Coleman

The biochemical and metabolic effects of deoxycoformycin, a potent inhibitor of adenosine deaminase, were investigated using two human T lymphoblastoid cell lines. A dose-response analysis demonstrated that the concentration of deoxycoformycin at which there was 50% inhibition of growth was greater than 1 X 10(-3) M in lymphoblastoid cells. Uptake of deoxycoformycin was biphasic and occurred much more slowly than for natural nucleosides, and lower saturation levels were reached. The intracellular concentration of deoxycoformycin achieved was 0.4 to 0.5 microM when the extracellular concentration was 1 microM. At 10 microM extracellular concentration, the intracellular concentration was 3-4 microM. Although deoxycoformycin at very low concentrations (1 or 10 microM) did not have any detectable effects on the growth of these cells, the nucleoside was found to be metabolized, and was phosphorylated to give the mono-, di-, and triphosphate derivatives. The triphosphate derivative was incorporated into cellular DNA with little incorporation into cellular RNA. Metabolism of deoxycoformycin in several mutant lymphoblastoid cells deficient in adenosine kinase and/or deoxycytidine kinase was found to be unchanged from wild-type cells, indicating that these major nucleoside kinases do not play a significant role in the phosphorylation of deoxycoformycin. These results may account, at least in part, for the differences that are observed between the pharmacologic inhibition of adenosine deaminase, and the inherited deficiency of adenosine deaminase.

UI MeSH Term Description Entries
D009700 Nucleoside Deaminases Catalyze the hydrolysis of nucleosides with the elimination of ammonia. Deaminases, Nucleoside
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D003070 Coformycin A ribonucleoside antibiotic synergist and adenosine deaminase inhibitor isolated from Nocardia interforma and Streptomyces kaniharaensis. It is proposed as an antineoplastic synergist and immunosuppressant.
D003838 Deoxyadenine Nucleotides Adenine nucleotides which contain deoxyribose as the sugar moiety. Deoxyadenosine Phosphates,Nucleotides, Deoxyadenine,Phosphates, Deoxyadenosine
D003839 Deoxyadenosines Adenosine molecules which can be substituted in any position, but are lacking one hydroxyl group in the ribose part of the molecule. Adenine Deoxyribonucleosides,Adenylyldeoxyribonucleosides,Deoxyadenosine Derivatives,Deoxyribonucleosides, Adenine,Derivatives, Deoxyadenosine
D003842 Deoxycytidine Kinase An enzyme that catalyzes reversibly the phosphorylation of deoxycytidine with the formation of a nucleoside diphosphate and deoxycytidine monophosphate. Cytosine arabinoside can also act as an acceptor. All natural nucleoside triphosphates, except deoxycytidine triphosphate, can act as donors. The enzyme is induced by some viruses, particularly the herpes simplex virus (HERPESVIRUS HOMINIS). EC 2.7.1.74. Kinase, Deoxycytidine
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000248 Adenosine Kinase An enzyme that catalyzes the formation of ADP plus AMP from adenosine plus ATP. It can serve as a salvage mechanism for returning adenosine to nucleic acids. EC 2.7.1.20. Kinase, Adenosine

Related Publications

M F Siaw, and M S Coleman
July 1985, Nihon Ketsueki Gakkai zasshi : journal of Japan Haematological Society,
M F Siaw, and M S Coleman
January 1998, Bioorganicheskaia khimiia,
M F Siaw, and M S Coleman
June 1954, British journal of cancer,
M F Siaw, and M S Coleman
November 1979, Biochemical pharmacology,
M F Siaw, and M S Coleman
October 1982, Clinical and experimental immunology,
Copied contents to your clipboard!