Myosin isoenzymes in normal and hypertrophied human ventricular myocardium. 1983

J J Mercadier, and P Bouveret, and L Gorza, and S Schiaffino, and W A Clark, and R Zak, and B Swynghedauw, and K Schwartz

We tested the hypothesis that hypertrophy of the human heart is associated with the redistribution of ventricular isomyosins. Human cardiac myosin was isolated from autopsy samples of left ventricular free wall of patients with cardiac hypertrophy and of fetal, young, and adult subjects without heart disease. The following parameters were studied: electrophoretic migration in denaturing and non-denaturing conditions; immunological cross-reactivities with three different types of antibodies; and early phosphate burst size and steady state ATPase activities stimulated by K+-EDTA, Ca++, Mg++, and actin. The antibodies were chosen for their ability to recognize selectively the rat V1 and V3 cardiac isomyosins. The first type was a monoclonal antibody, CCM-52, prepared against embryonic chick cardiac myosin, the second was an anti-beef atrial myosin, and the third was an anti-rat V1 myosin. CCM-52 reacted with a greater affinity with rat V3 than with rat V1, and was a probe of mammalian V3. Anti-beef atrial myosin and anti-rat V1 myosin both recognized specifically beef atrial and rat V1 myosins, and were thus considered as probes of mammalian V1. Under non-denaturing conditions, human myosins migrated as rat V3 isomyosin; under denaturing conditions, no difference was observed in any of the electrophoretic parameters between all samples tested, except for the fetal hearts which contained a fetal type of light chain. The immunological studies indicated that human myosins were composed mostly of a V3 type (HV3), but contained also some V1 isomyosin. A technique was developed to quantify the amount of human VI isomyosin which was found to range from almost 0 to 15% of total myosin, and to vary from one heart to the other, regardless of the origin of the heart. Enzymatic studies showed no significant difference between normal, hypertrophied, and fetal hearts in any of the activities tested. However, there was a significant correlation between Ca++-stimulated ATPase activities and HV1 amount (at 0.05 M KCl, n = 18, r2 equal 0.49, P less than 0.01; at 0.5 M KCl, n = 18, r 2 = 0.5, P less than 0.01). These data demonstrate the heterogeneity of human ventricular myosin, which appears to be composed, as in other mammalian species, of V1 and V3 isoforms of different ATPase activities (V1 greater than V3). However it seems that V1 to V3 shifts do not appear to be of physiological significance in the adaptation of human heart to chronic mechanical overloads.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D009218 Myosins A diverse superfamily of proteins that function as translocating proteins. They share the common characteristics of being able to bind ACTINS and hydrolyze MgATP. Myosins generally consist of heavy chains which are involved in locomotion, and light chains which are involved in regulation. Within the structure of myosin heavy chain are three domains: the head, the neck and the tail. The head region of the heavy chain contains the actin binding domain and MgATPase domain which provides energy for locomotion. The neck region is involved in binding the light-chains. The tail region provides the anchoring point that maintains the position of the heavy chain. The superfamily of myosins is organized into structural classes based upon the type and arrangement of the subunits they contain. Myosin ATPase,ATPase, Actin-Activated,ATPase, Actomyosin,ATPase, Myosin,Actin-Activated ATPase,Actomyosin ATPase,Actomyosin Adenosinetriphosphatase,Adenosine Triphosphatase, Myosin,Adenosinetriphosphatase, Actomyosin,Adenosinetriphosphatase, Myosin,Myosin,Myosin Adenosinetriphosphatase,ATPase, Actin Activated,Actin Activated ATPase,Myosin Adenosine Triphosphatase
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002648 Child A person 6 to 12 years of age. An individual 2 to 5 years old is CHILD, PRESCHOOL. Children
D004586 Electrophoresis An electrochemical process in which macromolecules or colloidal particles with a net electric charge migrate in a solution under the influence of an electric current. Electrophoreses

Related Publications

J J Mercadier, and P Bouveret, and L Gorza, and S Schiaffino, and W A Clark, and R Zak, and B Swynghedauw, and K Schwartz
January 1986, Biomedica biochimica acta,
J J Mercadier, and P Bouveret, and L Gorza, and S Schiaffino, and W A Clark, and R Zak, and B Swynghedauw, and K Schwartz
June 1984, Circulation research,
J J Mercadier, and P Bouveret, and L Gorza, and S Schiaffino, and W A Clark, and R Zak, and B Swynghedauw, and K Schwartz
January 1978, Progress in cardiovascular diseases,
J J Mercadier, and P Bouveret, and L Gorza, and S Schiaffino, and W A Clark, and R Zak, and B Swynghedauw, and K Schwartz
January 1982, Virchows Archiv. A, Pathological anatomy and histology,
J J Mercadier, and P Bouveret, and L Gorza, and S Schiaffino, and W A Clark, and R Zak, and B Swynghedauw, and K Schwartz
December 1984, European heart journal,
J J Mercadier, and P Bouveret, and L Gorza, and S Schiaffino, and W A Clark, and R Zak, and B Swynghedauw, and K Schwartz
January 1989, Basic research in cardiology,
J J Mercadier, and P Bouveret, and L Gorza, and S Schiaffino, and W A Clark, and R Zak, and B Swynghedauw, and K Schwartz
May 1975, Biochimica et biophysica acta,
J J Mercadier, and P Bouveret, and L Gorza, and S Schiaffino, and W A Clark, and R Zak, and B Swynghedauw, and K Schwartz
August 1997, Journal of cardiovascular electrophysiology,
J J Mercadier, and P Bouveret, and L Gorza, and S Schiaffino, and W A Clark, and R Zak, and B Swynghedauw, and K Schwartz
November 1997, The Journal of clinical investigation,
J J Mercadier, and P Bouveret, and L Gorza, and S Schiaffino, and W A Clark, and R Zak, and B Swynghedauw, and K Schwartz
November 1992, Clinical cardiology,
Copied contents to your clipboard!