Characterization of soluble polymerized fibrin formed in the presence of excess fibrinogen fragment D. 1984

D Knoll, and R Hantgan, and J Williams, and J McDonagh, and J Hermans

Polymerization of fibrin is inhibited in the presence of excess fibrinogen fragment D. This study was performed in order to test the proposal that these inhibited solutions contain short linear polymers of fibrin (protofibrils) whose further polymerization is prevented as a result of attachment of a molecule of fragment D at each end. Negative-stain electron micrographs, intrinsic viscosities, angular dependence of light scattering intensity, and kinetics of the increase of the scattered intensity with polymerization all were found to support the above model of the inhibited polymer and to reflect the presence of a broad distribution of the lengths of the inhibited fibrin polymers. Furthermore, sodium dodecyl sulfate-polyacrylamide gel electrophoresis of polymers stabilized with gamma-dimer cross-links introduced by factor XIIIa demonstrates cross-linking of fragment D to fibrin oligomers. Cross-linked polymers have been separated from excess fragment D by gel exclusion chromatography in 1 M urea. (In the absence of urea, the purified polymers very slowly associate to fibers.) The observation of the relative stability of short isolated inhibited protofibrils and the decrease or absence of inhibition of fibrin gelation when fragment D was added to solutions in which fibrin had been given time to polymerize to long protofibrils demonstrate that the inhibitory effect of fragment D occurs as a result of inhibition of the first fibrin polymerization step.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002850 Chromatography, Gel Chromatography on non-ionic gels without regard to the mechanism of solute discrimination. Chromatography, Exclusion,Chromatography, Gel Permeation,Chromatography, Molecular Sieve,Gel Filtration,Gel Filtration Chromatography,Chromatography, Size Exclusion,Exclusion Chromatography,Gel Chromatography,Gel Permeation Chromatography,Molecular Sieve Chromatography,Chromatography, Gel Filtration,Exclusion Chromatography, Size,Filtration Chromatography, Gel,Filtration, Gel,Sieve Chromatography, Molecular,Size Exclusion Chromatography
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D005337 Fibrin A protein derived from FIBRINOGEN in the presence of THROMBIN, which forms part of the blood clot. Antithrombin I
D005338 Fibrin Fibrinogen Degradation Products Soluble protein fragments formed by the proteolytic action of plasmin on fibrin or fibrinogen. FDP and their complexes profoundly impair the hemostatic process and are a major cause of hemorrhage in intravascular coagulation and fibrinolysis. Antithrombin VI,Fibrin Degradation Product,Fibrin Degradation Products,Fibrin Fibrinogen Split Products,Degradation Product, Fibrin,Degradation Products, Fibrin,Product, Fibrin Degradation
D005340 Fibrinogen Plasma glycoprotein clotted by thrombin, composed of a dimer of three non-identical pairs of polypeptide chains (alpha, beta, gamma) held together by disulfide bonds. Fibrinogen clotting is a sol-gel change involving complex molecular arrangements: whereas fibrinogen is cleaved by thrombin to form polypeptides A and B, the proteolytic action of other enzymes yields different fibrinogen degradation products. Coagulation Factor I,Factor I,Blood Coagulation Factor I,gamma-Fibrinogen,Factor I, Coagulation,gamma Fibrinogen
D005341 Fibrinolysin A product of the lysis of plasminogen (profibrinolysin) by PLASMINOGEN activators. It is composed of two polypeptide chains, light (B) and heavy (A), with a molecular weight of 75,000. It is the major proteolytic enzyme involved in blood clot retraction or the lysis of fibrin and quickly inactivated by antiplasmins. Plasmin,Fibrogammin,Glu-Plasmin,Protease F,Thrombolysin,Glu Plasmin

Related Publications

D Knoll, and R Hantgan, and J Williams, and J McDonagh, and J Hermans
September 1981, The Biochemical journal,
D Knoll, and R Hantgan, and J Williams, and J McDonagh, and J Hermans
June 1978, Thrombosis research,
D Knoll, and R Hantgan, and J Williams, and J McDonagh, and J Hermans
February 1967, Thrombosis et diathesis haemorrhagica,
D Knoll, and R Hantgan, and J Williams, and J McDonagh, and J Hermans
August 1977, The American journal of physiology,
D Knoll, and R Hantgan, and J Williams, and J McDonagh, and J Hermans
March 1976, Biochimica et biophysica acta,
D Knoll, and R Hantgan, and J Williams, and J McDonagh, and J Hermans
June 1979, Thrombosis and haemostasis,
D Knoll, and R Hantgan, and J Williams, and J McDonagh, and J Hermans
January 1989, Molekuliarnaia biologiia,
D Knoll, and R Hantgan, and J Williams, and J McDonagh, and J Hermans
March 1976, The Journal of biological chemistry,
D Knoll, and R Hantgan, and J Williams, and J McDonagh, and J Hermans
January 1976, Ukrains'kyi biokhimichnyi zhurnal,
Copied contents to your clipboard!