Oxidation-reduction properties and complexation reactions of the iron-molybdenum cofactor of nitrogenase. 1980

B K Burgess, and E I Stiefel, and W E Newton

The interactions of the iron-molybdenum cofactor, FeMoco, isolated from acid-treated Azotobacter vinelandii molybdenum-iron protein (Av1) with EDTA and thiophenol in N-methylformamide solution have been reinvestigated. Our studies show that EDTA alone is sufficient to eliminate the EPR signal of dithionite-reduced FeMoco. Neither light/5-deazaflavin nor carbon monoxide are required, which implies that this EPR-silent form of FeMoco does not correspond to the EPR-silent, substrate-reducing state of Av1. As EDTA-treated FeMoco does not regain EPR activity on addition of sodium dithionite or thiophenol, it is apparently distinct from the EPR-silent form of either dye-oxidized FeMoco or dye-oxidized Av1. Thiophenol sharpens the EPR signal of dithionite-reduced FeMoco and shifts the g = 3.3 feature to g = 3.6. This shift is complete at 1:1 ratio of thiophenol/Mo atom, while the EDTA effect requires about 40 molecules/Mo atom. Thiophenol and EDTA probably affect different sites of FeMoco. The binding of either reactant does not affect the activity of FeMoco as measured by its ability to reconstitute extracts of A. vinelandii mutant UW45.

UI MeSH Term Description Entries
D007501 Iron A metallic element with atomic symbol Fe, atomic number 26, and atomic weight 55.85. It is an essential constituent of HEMOGLOBINS; CYTOCHROMES; and IRON-BINDING PROTEINS. It plays a role in cellular redox reactions and in the transport of OXYGEN. Iron-56,Iron 56
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008982 Molybdenum A metallic element with the atomic symbol Mo, atomic number 42, and atomic weight 95.95. It is an essential trace element, being a component of the enzymes xanthine oxidase, aldehyde oxidase, and nitrate reductase. Molybdenum-98,Molybdenum 98
D009591 Nitrogenase An enzyme system that catalyzes the fixing of nitrogen in soil bacteria and blue-green algae (CYANOBACTERIA). EC 1.18.6.1. Dinitrogenase,Vanadium Nitrogenase,Nitrogenase, Vanadium
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D004492 Edetic Acid A chelating agent that sequesters a variety of polyvalent cations such as CALCIUM. It is used in pharmaceutical manufacturing and as a food additive. EDTA,Edathamil,Edetates,Ethylenediaminetetraacetic Acid,Tetracemate,Calcium Disodium Edetate,Calcium Disodium Versenate,Calcium Tetacine,Chelaton 3,Chromium EDTA,Copper EDTA,Coprin,Dicobalt EDTA,Disodium Calcitetracemate,Disodium EDTA,Disodium Ethylene Dinitrilotetraacetate,Distannous EDTA,Edetate Disodium Calcium,Edetic Acid, Calcium Salt,Edetic Acid, Calcium, Sodium Salt,Edetic Acid, Chromium Salt,Edetic Acid, Dipotassium Salt,Edetic Acid, Disodium Salt,Edetic Acid, Disodium Salt, Dihydrate,Edetic Acid, Disodium, Magnesium Salt,Edetic Acid, Disodium, Monopotassium Salt,Edetic Acid, Magnesium Salt,Edetic Acid, Monopotassium Salt,Edetic Acid, Monosodium Salt,Edetic Acid, Potassium Salt,Edetic Acid, Sodium Salt,Ethylene Dinitrilotetraacetate,Ethylenedinitrilotetraacetic Acid,Gallium EDTA,Magnesium Disodium EDTA,N,N'-1,2-Ethanediylbis(N-(carboxymethyl)glycine),Potassium EDTA,Stannous EDTA,Versenate,Versene,Acid, Edetic,Acid, Ethylenediaminetetraacetic,Acid, Ethylenedinitrilotetraacetic,Calcitetracemate, Disodium,Dinitrilotetraacetate, Disodium Ethylene,Dinitrilotetraacetate, Ethylene,Disodium Versenate, Calcium,EDTA, Chromium,EDTA, Copper,EDTA, Dicobalt,EDTA, Disodium,EDTA, Distannous,EDTA, Gallium,EDTA, Magnesium Disodium,EDTA, Potassium,EDTA, Stannous,Edetate, Calcium Disodium,Ethylene Dinitrilotetraacetate, Disodium,Tetacine, Calcium,Versenate, Calcium Disodium
D004578 Electron Spin Resonance Spectroscopy A technique applicable to the wide variety of substances which exhibit paramagnetism because of the magnetic moments of unpaired electrons. The spectra are useful for detection and identification, for determination of electron structure, for study of interactions between molecules, and for measurement of nuclear spins and moments. (From McGraw-Hill Encyclopedia of Science and Technology, 7th edition) Electron nuclear double resonance (ENDOR) spectroscopy is a variant of the technique which can give enhanced resolution. Electron spin resonance analysis can now be used in vivo, including imaging applications such as MAGNETIC RESONANCE IMAGING. ENDOR,Electron Nuclear Double Resonance,Electron Paramagnetic Resonance,Paramagnetic Resonance,Electron Spin Resonance,Paramagnetic Resonance, Electron,Resonance, Electron Paramagnetic,Resonance, Electron Spin,Resonance, Paramagnetic
D001395 Azotobacter A genus of gram-negative, aerobic bacteria found in soil and water. Its organisms occur singly, in pairs or irregular clumps, and sometimes in chains of varying lengths.

Related Publications

B K Burgess, and E I Stiefel, and W E Newton
March 1978, Biochemical and biophysical research communications,
B K Burgess, and E I Stiefel, and W E Newton
May 1999, The Journal of biological chemistry,
B K Burgess, and E I Stiefel, and W E Newton
January 2008, Annual review of microbiology,
B K Burgess, and E I Stiefel, and W E Newton
October 1988, BioFactors (Oxford, England),
B K Burgess, and E I Stiefel, and W E Newton
January 1994, Critical reviews in biotechnology,
B K Burgess, and E I Stiefel, and W E Newton
May 2013, The Journal of biological chemistry,
B K Burgess, and E I Stiefel, and W E Newton
February 2004, Chemical reviews,
B K Burgess, and E I Stiefel, and W E Newton
August 1977, Proceedings of the National Academy of Sciences of the United States of America,
B K Burgess, and E I Stiefel, and W E Newton
July 1992, Proceedings of the National Academy of Sciences of the United States of America,
B K Burgess, and E I Stiefel, and W E Newton
September 1984, Journal of bacteriology,
Copied contents to your clipboard!