Suppression of sprouted synapses in axolotl muscle by transplanted foreign nerves. 1980

D J Wigston

1. The supracoracoideus (s.c.) muscle of the axolotl shoulder is innervated by two nerves, the anterior and posterior s.c. nerves. The posterior nerve was induced to make synapses outside its normal territory in the muscle by removing a segment of the anterior nerve. Intracellular recording indicated that the efficacy of transmission from posterior nerve terminals outside their normal territory increased over several weeks prior to the return of the anterior nerve. 2. The anterior nerve reinnervated its muscle by 40-50 days after the operation, and quickly made synapses throughout the muscle. The posterior nerve territory subsequently returned to its original size and location over 3-6 months. 3. Transplantation of either of two completely foreign nerves into s.c. muscles with enlarged posterior nerve territories resulted in a similar return of the posterior nerve territory to its normal size when anterior nerve regeneration was prevented. 4. These results suggest that the advantage which newly regenerated native nerves have over sprouted foreign nerves is not the quality of 'nativeness' but rather the smaller number of synapses they support. In this view, sprouted nerves compete less effectively because they initially support more synapses per neurone than regenerating nerves.

UI MeSH Term Description Entries
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009416 Nerve Regeneration Renewal or physiological repair of damaged nerve tissue. Nerve Tissue Regeneration,Nervous Tissue Regeneration,Neural Tissue Regeneration,Nerve Tissue Regenerations,Nervous Tissue Regenerations,Neural Tissue Regenerations,Regeneration, Nerve,Regeneration, Nerve Tissue,Regeneration, Nervous Tissue,Regeneration, Neural Tissue,Tissue Regeneration, Nerve,Tissue Regeneration, Nervous,Tissue Regeneration, Neural
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000557 Ambystoma A genus of the Ambystomatidae family. The best known species are the axolotl AMBYSTOMA MEXICANUM and the closely related tiger salamander Ambystoma tigrinum. They may retain gills and remain aquatic without developing all of the adult characteristics. However, under proper changes in the environment they metamorphose. Amblystoma,Ambystoma tigrinum,Tiger Salamander,Amblystomas,Ambystomas,Salamander, Tiger,Salamanders, Tiger,Tiger Salamanders
D000558 Ambystoma mexicanum A salamander found in Mexican mountain lakes and accounting for about 30 percent of the urodeles used in research. The axolotl remains in larval form throughout its life, a phenomenon known as neoteny. Axolotl,Mexican Salamander,Ambystoma mexicanums,Axolotls,Salamander, Mexican,mexicanums, Ambystoma
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon
D013127 Spinal Nerves The 31 paired peripheral nerves formed by the union of the dorsal and ventral spinal roots from each spinal cord segment. The spinal nerve plexuses and the spinal roots are also included. Nerve, Spinal,Nerves, Spinal,Spinal Nerve
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse
Copied contents to your clipboard!