Angiotensin increases Na+ entry and Na+/K+ pump activity in cultures of smooth muscle from rat aorta. 1982

T A Brock, and L J Lewis, and J B Smith

Angiotensin markedly altered the Na+ permeability of smooth muscle cells cultured from explants of rat aorta. The rate of net Na+ uptake was followed in the presence of ouabain in order to block Na+ efflux via the Na+/K+ pump. Angiotensin II (AII) or angiotensin III (AIII) increased net Na+ uptake by about 3-fold. Maximal stimulation of Na+ uptake was produced by about 10 nM AII. Bradykinin and the angiotensin antagonist [Sar1, Ileu5, Ala8]AII had no significant effect on net Na+ uptake. Angiotensin also enhanced the activity of the Na+/K+ pump, which was assayed by following the rate of ouabain-sensitive 86Rb+ uptake by the cells. AII and AIII nearly doubled ouabain-sensitive 86Rb+ uptake, but bradykinin, norepinephrine, and [Sar1, Ileu5, Ala8]AII had no effect. In the presence of ouabain, 86Rb+ uptake was not significantly affected by AII or AIII, indicating that angiotensin did not alter passive permeability to Rb+. Loading the cells with Na+, either by incubation in K+-free medium or exposure to the Na+-selective ionophore monensin, markedly increased ouabain-sensitive 86RB+ uptake. This result indicates that the activity of the Na+/K+ pump is limited by the low level of Na+ that is normally in the cells. AII had no effect on the activity of the Na+/K+ pump in Na+-loaded cells. These results suggest that AII or AIII stimulates the Na+/K+ pump in cultured aortic muscle cells by increasing its Na+ supply.

UI MeSH Term Description Entries
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D002463 Cell Membrane Permeability A quality of cell membranes which permits the passage of solvents and solutes into and out of cells. Permeability, Cell Membrane
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D000254 Sodium-Potassium-Exchanging ATPase An enzyme that catalyzes the active transport system of sodium and potassium ions across the cell wall. Sodium and potassium ions are closely coupled with membrane ATPase which undergoes phosphorylation and dephosphorylation, thereby providing energy for transport of these ions against concentration gradients. ATPase, Sodium, Potassium,Adenosinetriphosphatase, Sodium, Potassium,Na(+)-K(+)-Exchanging ATPase,Na(+)-K(+)-Transporting ATPase,Potassium Pump,Sodium Pump,Sodium, Potassium ATPase,Sodium, Potassium Adenosinetriphosphatase,Sodium-Potassium Pump,Adenosine Triphosphatase, Sodium, Potassium,Na(+) K(+)-Transporting ATPase,Sodium, Potassium Adenosine Triphosphatase,ATPase Sodium, Potassium,ATPase, Sodium-Potassium-Exchanging,Adenosinetriphosphatase Sodium, Potassium,Pump, Potassium,Pump, Sodium,Pump, Sodium-Potassium,Sodium Potassium Exchanging ATPase,Sodium Potassium Pump
D000804 Angiotensin II An octapeptide that is a potent but labile vasoconstrictor. It is produced from angiotensin I after the removal of two amino acids at the C-terminal by ANGIOTENSIN CONVERTING ENZYME. The amino acid in position 5 varies in different species. To block VASOCONSTRICTION and HYPERTENSION effect of angiotensin II, patients are often treated with ACE INHIBITORS or with ANGIOTENSIN II TYPE 1 RECEPTOR BLOCKERS. Angiotensin II, Ile(5)-,Angiotensin II, Val(5)-,5-L-Isoleucine Angiotensin II,ANG-(1-8)Octapeptide,Angiotensin II, Isoleucine(5)-,Angiotensin II, Valine(5)-,Angiotensin-(1-8) Octapeptide,Isoleucine(5)-Angiotensin,Isoleucyl(5)-Angiotensin II,Valyl(5)-Angiotensin II,5 L Isoleucine Angiotensin II,Angiotensin II, 5-L-Isoleucine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001011 Aorta The main trunk of the systemic arteries. Aortas
D012413 Rubidium An element that is an alkali metal. It has an atomic symbol Rb, atomic number 37, and atomic weight 85.47. It is used as a chemical reagent and in the manufacture of photoelectric cells.
D012964 Sodium A member of the alkali group of metals. It has the atomic symbol Na, atomic number 11, and atomic weight 23. Sodium Ion Level,Sodium-23,Ion Level, Sodium,Level, Sodium Ion,Sodium 23
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

T A Brock, and L J Lewis, and J B Smith
August 2001, British journal of pharmacology,
T A Brock, and L J Lewis, and J B Smith
November 2013, American journal of physiology. Renal physiology,
T A Brock, and L J Lewis, and J B Smith
October 1980, Journal of cellular physiology,
T A Brock, and L J Lewis, and J B Smith
September 1997, The Journal of physiology,
T A Brock, and L J Lewis, and J B Smith
April 1997, Cardiovascular research,
T A Brock, and L J Lewis, and J B Smith
September 1982, Life sciences,
T A Brock, and L J Lewis, and J B Smith
January 1997, Experimental lung research,
T A Brock, and L J Lewis, and J B Smith
November 1989, European journal of pharmacology,
T A Brock, and L J Lewis, and J B Smith
June 1998, European journal of pharmacology,
Copied contents to your clipboard!