Calmodulin and Ca2+ in normal and transformed cells. 1982

M L Veigl, and W D Sedwick, and T C Vanaman

Numerous lines of evidence implicate calcium and calmodulin (CaM) as regulators of cell growth and functional differentiation. In light of this evidence, several studies of the possible involvement of the CaM system in cellular transformation by RNA and DNA tumor viruses have been carried out. This paper summarizes the evidence linking calcium and CaM to the regulation of cell growth and critically examines the evidence that increases in CaM levels occur in transformed versus normal cells. A nontraumatic method for synchronizing both normal and transformed chick fibroblasts is presented. This method is utilized in a comparison of CaM level throughout the cell cycle of Rous sarcoma virus transformed and normal chick embryo fibroblasts. These studies best support the hypothesis that the observed differences in CaM levels between transformed and normal cultures under optimal growth conditions may largely reflect differences in the proportion of cells in a dividing versus a nondividing state.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002135 Calcium-Binding Proteins Proteins to which calcium ions are bound. They can act as transport proteins, regulator proteins, or activator proteins. They typically contain EF HAND MOTIFS. Calcium Binding Protein,Calcium-Binding Protein,Calcium Binding Proteins,Binding Protein, Calcium,Binding Proteins, Calcium,Protein, Calcium Binding,Protein, Calcium-Binding
D002147 Calmodulin A heat-stable, low-molecular-weight activator protein found mainly in the brain and heart. The binding of calcium ions to this protein allows this protein to bind to cyclic nucleotide phosphodiesterases and to adenyl cyclase with subsequent activation. Thereby this protein modulates cyclic AMP and cyclic GMP levels. Calcium-Dependent Activator Protein,Calcium-Dependent Regulator,Bovine Activator Protein,Cyclic AMP-Phosphodiesterase Activator,Phosphodiesterase Activating Factor,Phosphodiesterase Activator Protein,Phosphodiesterase Protein Activator,Regulator, Calcium-Dependent,AMP-Phosphodiesterase Activator, Cyclic,Activating Factor, Phosphodiesterase,Activator Protein, Bovine,Activator Protein, Calcium-Dependent,Activator Protein, Phosphodiesterase,Activator, Cyclic AMP-Phosphodiesterase,Activator, Phosphodiesterase Protein,Calcium Dependent Activator Protein,Calcium Dependent Regulator,Cyclic AMP Phosphodiesterase Activator,Factor, Phosphodiesterase Activating,Protein Activator, Phosphodiesterase,Protein, Bovine Activator,Protein, Calcium-Dependent Activator,Protein, Phosphodiesterase Activator,Regulator, Calcium Dependent
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D002472 Cell Transformation, Viral An inheritable change in cells manifested by changes in cell division and growth and alterations in cell surface properties. It is induced by infection with a transforming virus. Transformation, Viral Cell,Viral Cell Transformation,Cell Transformations, Viral,Transformations, Viral Cell,Viral Cell Transformations
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D005306 Fertilization The fusion of a spermatozoon (SPERMATOZOA) with an OVUM thus resulting in the formation of a ZYGOTE. Conception,Fertilization, Delayed,Fertilization, Polyspermic,Conceptions,Delayed Fertilization,Delayed Fertilizations,Fertilizations,Fertilizations, Delayed,Fertilizations, Polyspermic,Polyspermic Fertilization,Polyspermic Fertilizations
D005347 Fibroblasts Connective tissue cells which secrete an extracellular matrix rich in collagen and other macromolecules. Fibroblast

Related Publications

M L Veigl, and W D Sedwick, and T C Vanaman
February 1981, Proceedings of the National Academy of Sciences of the United States of America,
M L Veigl, and W D Sedwick, and T C Vanaman
May 1984, Proceedings of the National Academy of Sciences of the United States of America,
M L Veigl, and W D Sedwick, and T C Vanaman
March 1985, The American journal of physiology,
M L Veigl, and W D Sedwick, and T C Vanaman
April 1983, The Journal of biological chemistry,
M L Veigl, and W D Sedwick, and T C Vanaman
February 1985, Biochimica et biophysica acta,
M L Veigl, and W D Sedwick, and T C Vanaman
May 1984, Molecular and cellular biology,
M L Veigl, and W D Sedwick, and T C Vanaman
May 1985, The American journal of physiology,
M L Veigl, and W D Sedwick, and T C Vanaman
June 1983, Journal of cellular physiology,
M L Veigl, and W D Sedwick, and T C Vanaman
January 1990, Advances in experimental medicine and biology,
M L Veigl, and W D Sedwick, and T C Vanaman
January 1990, Advances in experimental medicine and biology,
Copied contents to your clipboard!