Spontaneous activation of the first component of human complement (C1) by an intramolecular autocatalytic mechanism. 1982

R J Ziccardi

For biochemical characterization, the first component of human complement (C1) was reconstituted from physiologic concentrations of purified C1q, 125I C1r, and 131I C1s. Upon incubation at 37 degrees C, C1 spontaneously activated, as evidenced by the characteristic proteolysis of the C1r and C1s polypeptide chains as detected by SDS-PAGE analysis. This spontaneous C1 activation followed first-order kinetics (t 1/2 = 4 min and k = 0.173 min-1) with an activation energy of 19.1 kcal/mol. Spontaneous C1 activation was unaffected by the general protease inhibitor phenylmethylsulfonylfluoride (PMSF) but reversibly blocked by a known inhibitor of C1 activation, nitrophenylguanidinobenzoate (NPGB). Spontaneous C1 activation was measured at C1 concentrations ranging from 9 to 160 nM (i.e., 0.05 to 1.0 times physiologic concentrations). The data indicate that C1 spontaneously activates by an intramolecular autocatalytic mechanism, for first-order kinetics were observed over the entire concentration range with t 1/2 = 4 min at each concentration. However, the percentage of activable C1 decreased with dilution due to C1 dissociation (i.e., C1qr2s2 leads to C1q + C1r2s2). The observed concentration of C1 that spontaneously activated at each dilution equalled the concentration of C1 present as macromolecular C1. When reconstituted C1 was mixed with normal human serum (NHS) and then incubated at 37 degrees C, spontaneous C1 activation was completely inhibited. Pretreating NHS at 56 degrees C for 30 min destroyed its inhibitory activity. In conclusion, C1 spontaneously autoactivates at 37 degrees C by an intramolecular mechanism. This activation is suppressed in NHS.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D010664 Phenylmethylsulfonyl Fluoride An enzyme inhibitor that inactivates IRC-50 arvin, subtilisin, and the fatty acid synthetase complex. Benzenemethanesulfonyl Fluoride,Phenylmethanesulfonyl Fluoride,Fluoride, Benzenemethanesulfonyl,Fluoride, Phenylmethanesulfonyl,Fluoride, Phenylmethylsulfonyl
D011480 Protease Inhibitors Compounds which inhibit or antagonize biosynthesis or actions of proteases (ENDOPEPTIDASES). Antiprotease,Endopeptidase Inhibitor,Endopeptidase Inhibitors,Peptidase Inhibitor,Peptidase Inhibitors,Peptide Hydrolase Inhibitor,Peptide Hydrolase Inhibitors,Peptide Peptidohydrolase Inhibitor,Peptide Peptidohydrolase Inhibitors,Protease Antagonist,Protease Antagonists,Antiproteases,Protease Inhibitor,Antagonist, Protease,Antagonists, Protease,Hydrolase Inhibitor, Peptide,Hydrolase Inhibitors, Peptide,Inhibitor, Endopeptidase,Inhibitor, Peptidase,Inhibitor, Peptide Hydrolase,Inhibitor, Peptide Peptidohydrolase,Inhibitor, Protease,Inhibitors, Endopeptidase,Inhibitors, Peptidase,Inhibitors, Peptide Hydrolase,Inhibitors, Peptide Peptidohydrolase,Inhibitors, Protease,Peptidohydrolase Inhibitor, Peptide,Peptidohydrolase Inhibitors, Peptide
D002384 Catalysis The facilitation of a chemical reaction by material (catalyst) that is not consumed by the reaction. Catalyses
D003166 Complement Activating Enzymes Enzymes that activate one or more COMPLEMENT PROTEINS in the complement system leading to the formation of the COMPLEMENT MEMBRANE ATTACK COMPLEX, an important response in host defense. They are enzymes in the various COMPLEMENT ACTIVATION pathways. Activating Enzymes, Complement,Enzymes, Complement Activating
D003167 Complement Activation The sequential activation of serum COMPLEMENT PROTEINS to create the COMPLEMENT MEMBRANE ATTACK COMPLEX. Factors initiating complement activation include ANTIGEN-ANTIBODY COMPLEXES, microbial ANTIGENS, or cell surface POLYSACCHARIDES. Activation, Complement,Activations, Complement,Complement Activations
D003172 Complement C1 The first complement component to act in the activation of CLASSICAL COMPLEMENT PATHWAY. It is a calcium-dependent trimolecular complex made up of three subcomponents: COMPLEMENT C1Q; COMPLEMENT C1R; and COMPLEMENT C1S at 1:2:2 ratios. When the intact C1 binds to at least two antibodies (involving C1q), C1r and C1s are sequentially activated, leading to subsequent steps in the cascade of COMPLEMENT ACTIVATION. C1 Complement,Complement 1,Complement Component 1,C1, Complement,Complement, C1,Component 1, Complement
D003173 Complement C1s A 77-kDa subcomponent of complement C1, encoded by gene C1S, is a SERINE PROTEASE existing as a proenzyme (homodimer) in the intact complement C1 complex. Upon the binding of COMPLEMENT C1Q to antibodies, the activated COMPLEMENT C1R cleaves C1s into two chains, A (heavy) and B (light, the serine protease), linked by disulfide bonds yielding the active C1s. The activated C1s, in turn, cleaves COMPLEMENT C2 and COMPLEMENT C4 to form C4b2a (CLASSICAL C3 CONVERTASE). C 1 Esterase,C1 Esterase,C1s Complement,Complement 1 Esterase,Complement 1s,Complement Component 1s,C1s, Complement,Complement, C1s,Component 1s, Complement,Esterase, C 1,Esterase, C1,Esterase, Complement 1
D006146 Guanidines A family of iminourea derivatives. The parent compound has been isolated from mushrooms, corn germ, rice hulls, mussels, earthworms, and turnip juice. Derivatives may have antiviral and antifungal properties.
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
Copied contents to your clipboard!