Calcium in excitation--contraction coupling of frog skeletal muscle. 1982

S R Taylor, and J R Lopez, and P J Griffiths, and G Trube, and G Cecchi

A principal step in the process leading to muscle contraction is the intracellular release of Ca2+. We have detected and compared some physical and chemical events that reflect Ca2+ release in contracting frog skeletal muscle cells, described the effects of some agents that are believed to alter intracellular Ca2+ release during contraction, and speculated about the role of Ca2+ release in influencing some of the mechanical properties of frog muscle. The specific physical features recorded were changes in striation spacing, myofibrillar orientation, and force development. The chemical feature was the relative change in intracellular [Ca2+] recorded as light emission from cells microinjected with the Ca2+-sensitive protein aequorin. The presence or absence of a correlation among these variables has been used (i) to evaluate the action of some agents thought to change intracellular Ca2+ release in excitation--contraction (E--C) coupling, (ii) to further substantiate the effects of cell length on Ca2+ release, and (iii) to examine some details of models for E--C coupling. The results showed that potentiating agents enhance and prolong intracellular Ca2+ release without changing the rate of Ca2+ removal during E--C coupling. This extra Ca2+ does not produce the same effect on contractions at all lengths. Contractility is inversely related to cell length, and Ca2+-induced activation is normally less than maximum not only at short lengths but also at optimal striation spacings.

UI MeSH Term Description Entries
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D010775 Photic Stimulation Investigative technique commonly used during ELECTROENCEPHALOGRAPHY in which a series of bright light flashes or visual patterns are used to elicit brain activity. Stimulation, Photic,Visual Stimulation,Photic Stimulations,Stimulation, Visual,Stimulations, Photic,Stimulations, Visual,Visual Stimulations
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D002021 Buffers A chemical system that functions to control the levels of specific ions in solution. When the level of hydrogen ion in solution is controlled the system is called a pH buffer. Buffer
D002110 Caffeine A methylxanthine naturally occurring in some beverages and also used as a pharmacological agent. Caffeine's most notable pharmacological effect is as a central nervous system stimulant, increasing alertness and producing agitation. It also relaxes SMOOTH MUSCLE, stimulates CARDIAC MUSCLE, stimulates DIURESIS, and appears to be useful in the treatment of some types of headache. Several cellular actions of caffeine have been observed, but it is not entirely clear how each contributes to its pharmacological profile. Among the most important are inhibition of cyclic nucleotide PHOSPHODIESTERASES, antagonism of ADENOSINE RECEPTORS, and modulation of intracellular calcium handling. 1,3,7-Trimethylxanthine,Caffedrine,Coffeinum N,Coffeinum Purrum,Dexitac,Durvitan,No Doz,Percoffedrinol N,Percutaféine,Quick-Pep,Vivarin,Quick Pep,QuickPep
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical

Related Publications

S R Taylor, and J R Lopez, and P J Griffiths, and G Trube, and G Cecchi
August 1979, Biochemical Society transactions,
S R Taylor, and J R Lopez, and P J Griffiths, and G Trube, and G Cecchi
January 1976, The Japanese journal of physiology,
S R Taylor, and J R Lopez, and P J Griffiths, and G Trube, and G Cecchi
April 1988, The Journal of physiology,
S R Taylor, and J R Lopez, and P J Griffiths, and G Trube, and G Cecchi
September 1969, Archives internationales de pharmacodynamie et de therapie,
S R Taylor, and J R Lopez, and P J Griffiths, and G Trube, and G Cecchi
May 1995, The Journal of physiology,
S R Taylor, and J R Lopez, and P J Griffiths, and G Trube, and G Cecchi
November 1970, The American journal of physiology,
S R Taylor, and J R Lopez, and P J Griffiths, and G Trube, and G Cecchi
April 1982, The Journal of physiology,
S R Taylor, and J R Lopez, and P J Griffiths, and G Trube, and G Cecchi
September 1965, Pharmacological reviews,
S R Taylor, and J R Lopez, and P J Griffiths, and G Trube, and G Cecchi
January 1985, Progress in biophysics and molecular biology,
S R Taylor, and J R Lopez, and P J Griffiths, and G Trube, and G Cecchi
April 1988, The Journal of physiology,
Copied contents to your clipboard!