Mechano-sensitive linkage in excitation-contraction coupling in frog skeletal muscle. 1995

J D Bruton, and J Lännergren, and H Westerblad
Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.

1. Single skeletal muscle fibres of Xenopus laevis were used to investigate the involvement of a mechano-sensitive link in excitation-contraction coupling (EC coupling). 2. Fibres were stimulated by intermittent tetani until tension fell to about 40% of its initial level. Fibres were then stressed either by briefly stretching the fibres to 120% of their resting length or by exposing them to hypotonic Ringer solution ([NaCl] reduced to 80%) for 5 min. 3. In six of thirty-five stretched fibres and in all fourteen fibres exposed to hypotonic solution, a long-lasting depression of tension ensued. Tetanic tension then recovered slowly, often taking more than 10 h to return to its initial level. 4. During the period of minimal tension production, 12 mM caffeine induced a maximum contracture; 190 mM K+ induced a contracture larger than previous or subsequent tetani, and perchlorate (1 mM) slightly augmented tetanic tension. 5. Neither protease inhibitors nor a protein synthesis inhibitor altered the long-lasting period of tension depression and slow recovery. A free-radical scavenger was also without effect. 6. It is concluded that there is a mechano-sensitive link involved in EC coupling which can be damaged easily in fatigued muscle fibres.

UI MeSH Term Description Entries
D007038 Hypotonic Solutions Solutions that have a lesser osmotic pressure than a reference solution such as blood, plasma, or interstitial fluid. Solutions, Hypotonic
D008465 Mechanoreceptors Cells specialized to transduce mechanical stimuli and relay that information centrally in the nervous system. Mechanoreceptor cells include the INNER EAR hair cells, which mediate hearing and balance, and the various somatosensory receptors, often with non-neural accessory structures. Golgi Tendon Organ,Golgi Tendon Organs,Krause's End Bulb,Krause's End Bulbs,Mechanoreceptor,Mechanoreceptor Cell,Meissner's Corpuscle,Neurotendinous Spindle,Neurotendinous Spindles,Receptors, Stretch,Ruffini's Corpuscle,Ruffini's Corpuscles,Stretch Receptor,Stretch Receptors,Mechanoreceptor Cells,Bulb, Krause's End,Bulbs, Krause's End,Cell, Mechanoreceptor,Cells, Mechanoreceptor,Corpuscle, Meissner's,Corpuscle, Ruffini's,Corpuscles, Ruffini's,End Bulb, Krause's,End Bulbs, Krause's,Krause End Bulb,Krause End Bulbs,Krauses End Bulb,Krauses End Bulbs,Meissner Corpuscle,Meissners Corpuscle,Organ, Golgi Tendon,Organs, Golgi Tendon,Receptor, Stretch,Ruffini Corpuscle,Ruffini Corpuscles,Ruffinis Corpuscle,Ruffinis Corpuscles,Spindle, Neurotendinous,Spindles, Neurotendinous,Tendon Organ, Golgi,Tendon Organs, Golgi
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009124 Muscle Proteins The protein constituents of muscle, the major ones being ACTINS and MYOSINS. More than a dozen accessory proteins exist including TROPONIN; TROPOMYOSIN; and DYSTROPHIN. Muscle Protein,Protein, Muscle,Proteins, Muscle
D010812 Physical Stimulation Act of eliciting a response from a person or organism through physical contact. Stimulation, Physical,Physical Stimulations,Stimulations, Physical
D011480 Protease Inhibitors Compounds which inhibit or antagonize biosynthesis or actions of proteases (ENDOPEPTIDASES). Antiprotease,Endopeptidase Inhibitor,Endopeptidase Inhibitors,Peptidase Inhibitor,Peptidase Inhibitors,Peptide Hydrolase Inhibitor,Peptide Hydrolase Inhibitors,Peptide Peptidohydrolase Inhibitor,Peptide Peptidohydrolase Inhibitors,Protease Antagonist,Protease Antagonists,Antiproteases,Protease Inhibitor,Antagonist, Protease,Antagonists, Protease,Hydrolase Inhibitor, Peptide,Hydrolase Inhibitors, Peptide,Inhibitor, Endopeptidase,Inhibitor, Peptidase,Inhibitor, Peptide Hydrolase,Inhibitor, Peptide Peptidohydrolase,Inhibitor, Protease,Inhibitors, Endopeptidase,Inhibitors, Peptidase,Inhibitors, Peptide Hydrolase,Inhibitors, Peptide Peptidohydrolase,Inhibitors, Protease,Peptidohydrolase Inhibitor, Peptide,Peptidohydrolase Inhibitors, Peptide
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D005609 Free Radicals Highly reactive molecules with an unsatisfied electron valence pair. Free radicals are produced in both normal and pathological processes. Free radicals include reactive oxygen and nitrogen species (RONS). They are proven or suspected agents of tissue damage in a wide variety of circumstances including radiation, damage from environment chemicals, and aging. Natural and pharmacological prevention of free radical damage is being actively investigated. Free Radical
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

J D Bruton, and J Lännergren, and H Westerblad
April 1982, Canadian journal of physiology and pharmacology,
J D Bruton, and J Lännergren, and H Westerblad
September 1965, Pharmacological reviews,
J D Bruton, and J Lännergren, and H Westerblad
January 1985, Progress in biophysics and molecular biology,
J D Bruton, and J Lännergren, and H Westerblad
August 1984, Journal of muscle research and cell motility,
J D Bruton, and J Lännergren, and H Westerblad
January 1980, The Japanese journal of physiology,
J D Bruton, and J Lännergren, and H Westerblad
January 1975, The Japanese journal of physiology,
J D Bruton, and J Lännergren, and H Westerblad
January 1979, Acta physiologica Academiae Scientiarum Hungaricae,
J D Bruton, and J Lännergren, and H Westerblad
April 1992, The Journal of physiology,
J D Bruton, and J Lännergren, and H Westerblad
December 1974, Canadian journal of physiology and pharmacology,
J D Bruton, and J Lännergren, and H Westerblad
April 1982, The Journal of physiology,
Copied contents to your clipboard!