Calcium currents of frog and insect skeletal muscle fibres measured during voltage clamp. 1982

P R Stanfield, and F M Ashcroft

Both vertebrate and invertebrate skeletal muscle fibres have Ca2+ permeability mechanisms which are turned on by depolarization of the surface membrane. In frog muscle, Ca currents are extremely slow and will be scarcely activated during the action potential that normally elicits a twitch. This Ca permeability cannot therefore play any substantial, direct role in excitation--contraction coupling. In insect (Carausius morosus) muscle, Ca currents activate within milliseconds of depolarization, even at low temperature, and may well play at least a triggering role in excitation--contraction coupling. These Ca currents show saturation with increasing [Ca]0, while the instantaneous current--voltage relation rectifies inwards, as expected from a very low [Ca]i. The Ca channel is permeable to Sr2+ and Ba2+. Inactivation of Ca currents under a maintained depolarization depends on Ca2+ carrying inward current, however, rather than on the depolarization itself.

UI MeSH Term Description Entries
D007313 Insecta Members of the phylum ARTHROPODA composed or organisms characterized by division into three parts: head, thorax, and abdomen. They are the dominant group of animals on earth with several hundred thousand different kinds. Three orders, HEMIPTERA; DIPTERA; and SIPHONAPTERA; are of medical interest in that they cause disease in humans and animals. (From Borror et al., An Introduction to the Study of Insects, 4th ed, p1). Insects,Insect
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001001 Anura An order of the class Amphibia, which includes several families of frogs and toads. They are characterized by well developed hind limbs adapted for jumping, fused head and trunk and webbed toes. The term "toad" is ambiguous and is properly applied only to the family Bufonidae. Bombina,Frogs and Toads,Salientia,Toad, Fire-Bellied,Toads and Frogs,Anuras,Fire-Bellied Toad,Fire-Bellied Toads,Salientias,Toad, Fire Bellied,Toads, Fire-Bellied

Related Publications

P R Stanfield, and F M Ashcroft
July 1976, The Journal of physiology,
P R Stanfield, and F M Ashcroft
October 1966, The Journal of physiology,
P R Stanfield, and F M Ashcroft
July 1983, The Journal of physiology,
P R Stanfield, and F M Ashcroft
August 1977, The Journal of physiology,
P R Stanfield, and F M Ashcroft
August 1985, Journal of muscle research and cell motility,
P R Stanfield, and F M Ashcroft
December 1986, Pflugers Archiv : European journal of physiology,
P R Stanfield, and F M Ashcroft
September 1980, The Journal of physiology,
P R Stanfield, and F M Ashcroft
April 1978, The Journal of physiology,
Copied contents to your clipboard!