Prostacyclin modulates cholesteryl ester hydrolytic activity by its effect on cyclic adenosine monophosphate in rabbit aortic smooth muscle cells. 1982

D P Hajjar, and B B Weksler, and D J Falcone, and J M Hefton, and K Tack-Goldman, and C R Minick

We tested the hypothesis that prostacyclin (PGI2), 6-keto-prostaglandinF1 alpha(6-keto-PGF1 alpha), and several E series prostaglandins (PG) may affect the activity of cholesteryl ester (CE) hydrolase since our previous experiments indicated that smooth muscle cells (SMC) in neointima of injured rabbit aorta (a) acquire the capacity to produce PGI2 and (b) have increased lysosomal CE hydrolytic (acid cholesteryl ester hydrolase [ACEH])activity. Using cultured SMC from rabbit thoracic aorta, we demonstrated that PGI2, 6-keto-PGF1 alpha, and 6-keto-PGE1 enhanced ACEH activity fourfold. No significant effects on ACEH activity were observed with PGE1 or PGE2. Preincubation of SMC with an inhibitor of adenylate cyclase activity (dideoxyadenosine) abolished the effect of these PG on CE hydrolytic activity. Addition of dibutyryl cAMP to these SMC significantly increased ACEH activity. Although concentrations of PGI2 used significantly increased cAMP levels, proliferation of these SMC was not observed. In related experiments, we determined if the addition of PGI2, 6-keto-PGF1 alpha, or 6-keto-PGE1 to cultured aortic SMC would enhance the egress of unesterified cholesterol and CE from these SMC. A significant loss of total cholesterol from PG-treated SMC was observed at the end of 14 d. Results suggest that increased synthesis of PGI2 by neointimal SMC in the injured aortic wall may, at least in part, explain the changes in CE catabolism and accumulation following injury. These PG may also be important in CE metabolism and accumulation in human arteries.

UI MeSH Term Description Entries
D008247 Lysosomes A class of morphologically heterogeneous cytoplasmic particles in animal and plant tissues characterized by their content of hydrolytic enzymes and the structure-linked latency of these enzymes. The intracellular functions of lysosomes depend on their lytic potential. The single unit membrane of the lysosome acts as a barrier between the enzymes enclosed in the lysosome and the external substrate. The activity of the enzymes contained in lysosomes is limited or nil unless the vesicle in which they are enclosed is ruptured or undergoes MEMBRANE FUSION. (From Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed). Autolysosome,Autolysosomes,Lysosome
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D011453 Prostaglandins A group of compounds derived from unsaturated 20-carbon fatty acids, primarily arachidonic acid, via the cyclooxygenase pathway. They are extremely potent mediators of a diverse group of physiological processes. Prostaglandin,Prostanoid,Prostanoids
D011464 Epoprostenol A prostaglandin that is a powerful vasodilator and inhibits platelet aggregation. It is biosynthesized enzymatically from PROSTAGLANDIN ENDOPEROXIDES in human vascular tissue. The sodium salt has been also used to treat primary pulmonary hypertension (HYPERTENSION, PULMONARY). Prostacyclin,Prostaglandin I2,Epoprostanol,Epoprostenol Sodium,Epoprostenol Sodium Salt, (5Z,9alpha,11alpha,13E,15S)-Isomer,Flolan,Prostaglandin I(2),Veletri
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002265 Carboxylic Ester Hydrolases Enzymes which catalyze the hydrolysis of carboxylic acid esters with the formation of an alcohol and a carboxylic acid anion. Carboxylesterases,Ester Hydrolases, Carboxylic,Hydrolases, Carboxylic Ester
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002787 Sterol Esterase An enzyme that catalyzes the hydrolysis of CHOLESTEROL ESTERS and some other sterol esters, to liberate cholesterol plus a fatty acid anion. Cholesterol Esterase,15-Ketosteryl Oleate Hydrolase,Acylcholesterol Lipase,Cholesterol Ester Hydrolase,Cholesteryl Oleate Hydrolase,Cholesterylester Hydrolase,Hormone-Sensitive Lipase,Lipase A (Lysosomal Acid Cholesterol Esterase),Lipoidal Steroid Esterase,Lysosomal Acid Cholesterol Esterase,Lysosomal Acid Lipase,Steroid Hormone Esterase,Sterol Ester Acylhydrolase,15 Ketosteryl Oleate Hydrolase,Acid Lipase, Lysosomal,Acylhydrolase, Sterol Ester,Esterase, Cholesterol,Esterase, Lipoidal Steroid,Esterase, Steroid Hormone,Esterase, Sterol,Hormone Sensitive Lipase,Hydrolase, 15-Ketosteryl Oleate,Hydrolase, Cholesterol Ester,Hydrolase, Cholesteryl Oleate,Hydrolase, Cholesterylester,Lipase, Acylcholesterol,Lipase, Hormone-Sensitive,Steroid Esterase, Lipoidal
D002788 Cholesterol Esters Fatty acid esters of cholesterol which constitute about two-thirds of the cholesterol in the plasma. The accumulation of cholesterol esters in the arterial intima is a characteristic feature of atherosclerosis. Cholesterol Ester,Cholesteryl Ester,Cholesteryl Esters,Ester, Cholesterol,Ester, Cholesteryl,Esters, Cholesterol,Esters, Cholesteryl

Related Publications

D P Hajjar, and B B Weksler, and D J Falcone, and J M Hefton, and K Tack-Goldman, and C R Minick
May 1985, The Journal of clinical investigation,
D P Hajjar, and B B Weksler, and D J Falcone, and J M Hefton, and K Tack-Goldman, and C R Minick
March 1989, Lipids,
D P Hajjar, and B B Weksler, and D J Falcone, and J M Hefton, and K Tack-Goldman, and C R Minick
February 1986, Circulation research,
D P Hajjar, and B B Weksler, and D J Falcone, and J M Hefton, and K Tack-Goldman, and C R Minick
July 1989, Biochimica et biophysica acta,
D P Hajjar, and B B Weksler, and D J Falcone, and J M Hefton, and K Tack-Goldman, and C R Minick
November 1989, Archives des maladies du coeur et des vaisseaux,
D P Hajjar, and B B Weksler, and D J Falcone, and J M Hefton, and K Tack-Goldman, and C R Minick
January 1982, Radiation and environmental biophysics,
D P Hajjar, and B B Weksler, and D J Falcone, and J M Hefton, and K Tack-Goldman, and C R Minick
August 1986, Biochimica et biophysica acta,
D P Hajjar, and B B Weksler, and D J Falcone, and J M Hefton, and K Tack-Goldman, and C R Minick
January 1984, VASA. Zeitschrift fur Gefasskrankheiten,
D P Hajjar, and B B Weksler, and D J Falcone, and J M Hefton, and K Tack-Goldman, and C R Minick
March 1991, Chinese medical sciences journal = Chung-kuo i hsueh k'o hsueh tsa chih,
D P Hajjar, and B B Weksler, and D J Falcone, and J M Hefton, and K Tack-Goldman, and C R Minick
October 1989, Zhongguo yi xue ke xue yuan xue bao. Acta Academiae Medicinae Sinicae,
Copied contents to your clipboard!