Persistence of transforming and nontransforming Epstein-Barr virus in high passages of P3HR-1 cell lines. 1982

P Gerber, and D Ablashi, and I Magrath, and G Armstrong, and P Andersen, and L Trach

At least three laboratories have reported that the P3HR-1 line, which had originally produced transforming Epstein-Barr virus (EBV), now produces only the nontransforming variant. Studies to determine whether these findings were universal or a consequence of specific cell lines or culture conditions were undertaken in P3HR-1 cultures of identical HLA types from five sources. All of the EBV preparations derived from cell lines cultured at 32, 34, and 35 degrees C transformed cord blood lymphocytes, whereas virus propagated at 37 degrees C did not usually transform. Furthermore, indirect immunofluorescence revealed that a monoclonal antibody directed against transforming EBV membrane glycoprotein bound to 10-12% of the P3HR-1 cells that had been continuously propagated at 34 degrees C, but the antibody did not bind to the same cells cultured at 37 degrees C. Although virus expression was completely repressed in transformed cord blood cells, transforming virus could be rescued by superinfection with nontransforming P3HR-1 EBV. Cells transformed with P3HR-1 virus induced poorly differentiated lymphomas in athymic nude mice after seven or eight passages. Whether all P3HR-1 cells have the potential to produce detectable quantities of transforming virus remains to be determined.

UI MeSH Term Description Entries
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D008819 Mice, Nude Mutant mice homozygous for the recessive gene "nude" which fail to develop a thymus. They are useful in tumor studies and studies on immune responses. Athymic Mice,Mice, Athymic,Nude Mice,Mouse, Athymic,Mouse, Nude,Athymic Mouse,Nude Mouse
D002051 Burkitt Lymphoma A form of undifferentiated malignant LYMPHOMA usually found in central Africa, but also reported in other parts of the world. It is commonly manifested as a large osteolytic lesion in the jaw or as an abdominal mass. B-cell antigens are expressed on the immature cells that make up the tumor in virtually all cases of Burkitt lymphoma. The Epstein-Barr virus (HERPESVIRUS 4, HUMAN) has been isolated from Burkitt lymphoma cases in Africa and it is implicated as the causative agent in these cases; however, most non-African cases are EBV-negative. African Lymphoma,Burkitt Cell Leukemia,Burkitt Tumor,Lymphoma, Burkitt,Burkitt Leukemia,Burkitt's Leukemia,Burkitt's Lymphoma,Burkitt's Tumor,Leukemia, Lymphoblastic, Burkitt-Type,Leukemia, Lymphocytic, L3,Lymphocytic Leukemia, L3,Burkitts Leukemia,Burkitts Lymphoma,Burkitts Tumor,L3 Lymphocytic Leukemia,L3 Lymphocytic Leukemias,Leukemia, Burkitt,Leukemia, Burkitt Cell,Leukemia, Burkitt's,Leukemia, L3 Lymphocytic,Lymphoma, African,Lymphoma, Burkitt's,Tumor, Burkitt,Tumor, Burkitt's
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002472 Cell Transformation, Viral An inheritable change in cells manifested by changes in cell division and growth and alterations in cell surface properties. It is induced by infection with a transforming virus. Transformation, Viral Cell,Viral Cell Transformation,Cell Transformations, Viral,Transformations, Viral Cell,Viral Cell Transformations
D004854 Herpesvirus 4, Human The type species of LYMPHOCRYPTOVIRUS, subfamily GAMMAHERPESVIRINAE, infecting B-cells in humans. It is thought to be the causative agent of INFECTIOUS MONONUCLEOSIS and is strongly associated with oral hairy leukoplakia (LEUKOPLAKIA, HAIRY;), BURKITT LYMPHOMA; and other malignancies. Burkitt Herpesvirus,Burkitt Lymphoma Virus,E-B Virus,EBV,Epstein-Barr Virus,Human Herpesvirus 4,Infectious Mononucleosis Virus,Burkitt's Lymphoma Virus,HHV-4,Herpesvirus 4 (gamma), Human,Burkitts Lymphoma Virus,E B Virus,E-B Viruses,Epstein Barr Virus,Herpesvirus, Burkitt,Infectious Mononucleosis Viruses,Lymphoma Virus, Burkitt,Mononucleosis Virus, Infectious,Mononucleosis Viruses, Infectious
D005312 Fetal Blood Blood of the fetus. Exchange of nutrients and waste between the fetal and maternal blood occurs via the PLACENTA. The cord blood is blood contained in the umbilical vessels (UMBILICAL CORD) at the time of delivery. Cord Blood,Umbilical Cord Blood,Blood, Cord,Blood, Fetal,Blood, Umbilical Cord,Bloods, Cord,Bloods, Fetal,Bloods, Umbilical Cord,Cord Blood, Umbilical,Cord Bloods,Cord Bloods, Umbilical,Fetal Bloods,Umbilical Cord Bloods
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein
D006023 Glycoproteins Conjugated protein-carbohydrate compounds including MUCINS; mucoid, and AMYLOID glycoproteins. C-Glycosylated Proteins,Glycosylated Protein,Glycosylated Proteins,N-Glycosylated Proteins,O-Glycosylated Proteins,Glycoprotein,Neoglycoproteins,Protein, Glycosylated,Proteins, C-Glycosylated,Proteins, Glycosylated,Proteins, N-Glycosylated,Proteins, O-Glycosylated

Related Publications

P Gerber, and D Ablashi, and I Magrath, and G Armstrong, and P Andersen, and L Trach
July 1986, European journal of immunology,
P Gerber, and D Ablashi, and I Magrath, and G Armstrong, and P Andersen, and L Trach
July 2002, BMC microbiology,
P Gerber, and D Ablashi, and I Magrath, and G Armstrong, and P Andersen, and L Trach
December 1977, Virology,
P Gerber, and D Ablashi, and I Magrath, and G Armstrong, and P Andersen, and L Trach
January 1991, Intervirology,
P Gerber, and D Ablashi, and I Magrath, and G Armstrong, and P Andersen, and L Trach
January 1978, IARC scientific publications,
P Gerber, and D Ablashi, and I Magrath, and G Armstrong, and P Andersen, and L Trach
September 1982, Journal of virology,
P Gerber, and D Ablashi, and I Magrath, and G Armstrong, and P Andersen, and L Trach
February 1972, Gan,
P Gerber, and D Ablashi, and I Magrath, and G Armstrong, and P Andersen, and L Trach
August 1976, Journal of the National Cancer Institute,
P Gerber, and D Ablashi, and I Magrath, and G Armstrong, and P Andersen, and L Trach
May 1985, Journal of virology,
Copied contents to your clipboard!