Fine structure and evolution of the rat serum albumin gene. 1981

T D Sargent, and L L Jagodzinski, and M Yang, and J Bonner

The exons, their boundaries, and approximately half of the intronic deoxyribonucleic acid of the rat serum albumin gene were sequenced. In addition to the 14 exons identified earlier by R-loop analysis, a small exon was detected between the "leader" exon (Z) and exon B. The leader exon encoded the 5'-untranslated portion of albumin messenger ribonucleic acid and the "pre-pro" oligopeptide present on the nascent protein. The sites of initiation and termination of transcription were tentatively identified by comparison of the 5' and 3' gene-flanking sequences with those of other eucaryotic genes. All 28 intron/exon junctions conformed to the "GT-AG rule" (Breathnach et al., Proc. Natl. Acad. Sci. 75:4853-4857, 1978). The three homologous domains of albumin were encoded by three subgenes that consisted of four exons each and evolved by intragenic duplication of a common ancestor. The second and forth exons of each subgene appeared to be the result of an even earlier duplication event. We propose a model for the evolution of this gene that accounts for the observed patterns of exon size and homology.

UI MeSH Term Description Entries
D008957 Models, Genetic Theoretical representations that simulate the behavior or activity of genetic processes or phenomena. They include the use of mathematical equations, computers, and other electronic equipment. Genetic Models,Genetic Model,Model, Genetic
D012091 Repetitive Sequences, Nucleic Acid Sequences of DNA or RNA that occur in multiple copies. There are several types: INTERSPERSED REPETITIVE SEQUENCES are copies of transposable elements (DNA TRANSPOSABLE ELEMENTS or RETROELEMENTS) dispersed throughout the genome. TERMINAL REPEAT SEQUENCES flank both ends of another sequence, for example, the long terminal repeats (LTRs) on RETROVIRUSES. Variations may be direct repeats, those occurring in the same direction, or inverted repeats, those opposite to each other in direction. TANDEM REPEAT SEQUENCES are copies which lie adjacent to each other, direct or inverted (INVERTED REPEAT SEQUENCES). DNA Repetitious Region,Direct Repeat,Genes, Selfish,Nucleic Acid Repetitive Sequences,Repetitive Region,Selfish DNA,Selfish Genes,DNA, Selfish,Repetitious Region, DNA,Repetitive Sequence,DNA Repetitious Regions,DNAs, Selfish,Direct Repeats,Gene, Selfish,Repeat, Direct,Repeats, Direct,Repetitious Regions, DNA,Repetitive Regions,Repetitive Sequences,Selfish DNAs,Selfish Gene
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D004274 DNA, Recombinant Biologically active DNA which has been formed by the in vitro joining of segments of DNA from different sources. It includes the recombination joint or edge of a heteroduplex region where two recombining DNA molecules are connected. Genes, Spliced,Recombinant DNA,Spliced Gene,Recombinant DNA Research,Recombination Joint,DNA Research, Recombinant,Gene, Spliced,Joint, Recombination,Research, Recombinant DNA,Spliced Genes
D005075 Biological Evolution The process of cumulative change over successive generations through which organisms acquire their distinguishing morphological and physiological characteristics. Evolution, Biological
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012326 RNA Splicing The ultimate exclusion of nonsense sequences or intervening sequences (introns) before the final RNA transcript is sent to the cytoplasm. RNA, Messenger, Splicing,Splicing, RNA,RNA Splicings,Splicings, RNA

Related Publications

T D Sargent, and L L Jagodzinski, and M Yang, and J Bonner
June 1985, The Journal of biological chemistry,
T D Sargent, and L L Jagodzinski, and M Yang, and J Bonner
June 1977, Journal of molecular biology,
T D Sargent, and L L Jagodzinski, and M Yang, and J Bonner
July 1979, Proceedings of the National Academy of Sciences of the United States of America,
T D Sargent, and L L Jagodzinski, and M Yang, and J Bonner
December 1980, Journal of immunology (Baltimore, Md. : 1950),
T D Sargent, and L L Jagodzinski, and M Yang, and J Bonner
January 1982, Gene,
T D Sargent, and L L Jagodzinski, and M Yang, and J Bonner
September 2020, Physical chemistry chemical physics : PCCP,
T D Sargent, and L L Jagodzinski, and M Yang, and J Bonner
January 1994, Advances in protein chemistry,
T D Sargent, and L L Jagodzinski, and M Yang, and J Bonner
January 1956, Exposes annuels de biochimie medicale,
T D Sargent, and L L Jagodzinski, and M Yang, and J Bonner
August 1981, Proceedings of the National Academy of Sciences of the United States of America,
T D Sargent, and L L Jagodzinski, and M Yang, and J Bonner
January 1988, Chemical & pharmaceutical bulletin,
Copied contents to your clipboard!