The roles of degranulation and superoxide anion generation in neutrophil aggregation. 1982

H B Kaplan, and H S Edelson, and R Friedman, and G Weissmann

Human neutrophils when exposed to appropriate stimuli aggregate, generate O(2) and secrete lysosomal constituents. To determine whether a causal relationship may exist between these responses neutrophils were exposed to either N-formyl-methionyl-leucyl-phenylalanine, phorbol myristate acetate, or the two calcium ionophores, A23187 and prostaglandin Bx. Each agent elicited all of the above responses. The concentrations required to elicit the aggregation of 30 . 10(6) neutrophils/ml were comparable to that required for O(2) generation or lysozyme release. In a series of experiments designed to dissociate these responses, cells were suspended in a concentration too dilute (3 . 10(6) neutrophils/ml) to permit aggregation to occur. O(2) generation and lysozyme release was measurable and varied in a dose-dependent fashion to the concentration of stimulus. In a second series of experiments, neutrophils were treated with 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid to inhibit degranulation without affecting O(2) generation. Aggregation was inhibited in a parallel fashion with lysozyme release. When detectable O(2) was removed from the medium by superoxide dismutase and catalase, aggregation and lysozyme release unaffected showing that aggregation can not be due to the presence of O(2) or its products in the extracellular medium. Neither aggregation of resting cells nor augmentation of fMet-Leu-Phe-induced aggregation was observed when cells were exposed to either supernatants of degranulated neutrophils or constituents of specific granules (lysozyme, lactoferrin). Kinetic analysis showed that in the absence of cytochalasin B degranulation preceded aggregation, while in its presence aggregation preceded degranulation.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008247 Lysosomes A class of morphologically heterogeneous cytoplasmic particles in animal and plant tissues characterized by their content of hydrolytic enzymes and the structure-linked latency of these enzymes. The intracellular functions of lysosomes depend on their lytic potential. The single unit membrane of the lysosome acts as a barrier between the enzymes enclosed in the lysosome and the external substrate. The activity of the enzymes contained in lysosomes is limited or nil unless the vesicle in which they are enclosed is ruptured or undergoes MEMBRANE FUSION. (From Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed). Autolysosome,Autolysosomes,Lysosome
D008715 Methionine A sulfur-containing essential L-amino acid that is important in many body functions. L-Methionine,Liquimeth,Methionine, L-Isomer,Pedameth,L-Isomer Methionine,Methionine, L Isomer
D009239 N-Formylmethionine Effective in the initiation of protein synthesis. The initiating methionine residue enters the ribosome as N-formylmethionyl tRNA. This process occurs in Escherichia coli and other bacteria as well as in the mitochondria of eucaryotic cells. N Formylmethionine,Formylmethionine, N
D009240 N-Formylmethionine Leucyl-Phenylalanine A formylated tripeptide originally isolated from bacterial filtrates that is positively chemotactic to polymorphonuclear leucocytes, and causes them to release lysosomal enzymes and become metabolically activated. F-Met-Leu-Phe,N-Formyl-Methionyl-Leucyl-Phenylalanine,Formylmet-Leu-Phe,Formylmethionyl Peptide,Formylmethionyl-Leucyl-Phenylalanine,Formylmethionylleucylphenylalanine,N-Formylated Peptide,N-formylmethionyl-leucyl-phenylalanine,fMet-Leu-Phe,F Met Leu Phe,Formylmet Leu Phe,Formylmethionyl Leucyl Phenylalanine,Leucyl-Phenylalanine, N-Formylmethionine,N Formyl Methionyl Leucyl Phenylalanine,N Formylated Peptide,N Formylmethionine Leucyl Phenylalanine,N formylmethionyl leucyl phenylalanine,Peptide, Formylmethionyl,Peptide, N-Formylated,fMet Leu Phe
D009504 Neutrophils Granular leukocytes having a nucleus with three to five lobes connected by slender threads of chromatin, and cytoplasm containing fine inconspicuous granules and stainable by neutral dyes. LE Cells,Leukocytes, Polymorphonuclear,Polymorphonuclear Leukocytes,Polymorphonuclear Neutrophils,Neutrophil Band Cells,Band Cell, Neutrophil,Cell, LE,LE Cell,Leukocyte, Polymorphonuclear,Neutrophil,Neutrophil Band Cell,Neutrophil, Polymorphonuclear,Polymorphonuclear Leukocyte,Polymorphonuclear Neutrophil
D009842 Oligopeptides Peptides composed of between two and twelve amino acids. Oligopeptide
D010100 Oxygen An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration. Dioxygen,Oxygen-16,Oxygen 16
D002449 Cell Aggregation The phenomenon by which dissociated cells intermixed in vitro tend to group themselves with cells of their own type. Aggregation, Cell,Aggregations, Cell,Cell Aggregations
D002634 Chemotaxis, Leukocyte The movement of leukocytes in response to a chemical concentration gradient or to products formed in an immunologic reaction. Leukotaxis,Leukocyte Chemotaxis

Related Publications

H B Kaplan, and H S Edelson, and R Friedman, and G Weissmann
January 1982, Clinical immunology and immunopathology,
H B Kaplan, and H S Edelson, and R Friedman, and G Weissmann
January 1986, Thrombosis research,
H B Kaplan, and H S Edelson, and R Friedman, and G Weissmann
September 2015, Allergology international : official journal of the Japanese Society of Allergology,
H B Kaplan, and H S Edelson, and R Friedman, and G Weissmann
January 1996, Free radical biology & medicine,
H B Kaplan, and H S Edelson, and R Friedman, and G Weissmann
May 1993, Critical care medicine,
H B Kaplan, and H S Edelson, and R Friedman, and G Weissmann
May 1979, The American journal of pathology,
H B Kaplan, and H S Edelson, and R Friedman, and G Weissmann
July 1994, International journal of cardiology,
H B Kaplan, and H S Edelson, and R Friedman, and G Weissmann
September 2002, Experimental biology and medicine (Maywood, N.J.),
H B Kaplan, and H S Edelson, and R Friedman, and G Weissmann
January 1994, Journal of applied physiology (Bethesda, Md. : 1985),
Copied contents to your clipboard!