Conformational changes in benzodiazepine receptors induced by the antagonist Ro 15-1788. 1983

T H Chiu, and H C Rosenberg

The binding kinetics of [3H]Ro 15-1788, a selective benzodiazepine receptor antagonist, to synaptosomal membranes of rat cerebral cortices was studied. [3H]Ro 15-1788 binds with high affinity (dissociation constant, 0.53 nM) to a single class of binding sites (maximal binding capacity, 1.97 pmoles/mg of protein). Equilibrium binding was not affected by gamma-aminobutyric acid (GABA), NaCl, pentobarbital, or pretreatment of the membranes at 37 degrees. Association at 0 degrees was identical whether measured in the absence or presence of GABA or bicuculline methiodide or after preincubation of the membranes at 37 degrees. The association rate under pseudo-first order conditions was curvilinear and consisted of a fast component and a slow component. Dissociation at 0 degrees with 1 X 10(-5)M clonazepam was also curvilinear and could best be fitted by two linear exponential components. The dissociation rate was not altered by GABA, NaCl, pentobarbital, or pretreatment of membranes at 37 degrees. The dissociation rate was similar for 0.1, 1, and 10 nM [3H]Ro 15-1788. The ratio of slow to fast dissociation component for 10 nM [3H]Ro 15-1788 was larger than that for 0.1 and 1 nM [3H]Ro 15-1788. In contrast, the dissociation rate for 20 nM [3H]flunitrazepam ( [3H]FNP) was much greater than that for 2 nM [3H]FNP. Using ligand concentrations occupying the same fraction of receptors, the ratio of slow to fast dissociation components was invariably greater for [3H]Ro 15-1788 than that for [3H]FNP. The rate of dissociation for [3H]Ro 15-1788 was faster under pre-equilibrium conditions than under equilibrium conditions. These results, discussed in terms of the cyclic model of interaction between receptors and benzodiazepines, suggest that [3H]Ro 15-1788 is a powerful ligand in inducing conformational changes in the initial, more labile, binary complex. They also suggest that different conformational states deduced from studies of in vitro binding kinetics may not correspond to the distinct pharmacological actions of benzodiazepines. It is speculated that intrinsic activities of benzodiazepines probably are determined by the step beyond the complex formation and conformational changes suggested to occur by these studies of binding kinetics.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D011963 Receptors, GABA-A Cell surface proteins which bind GAMMA-AMINOBUTYRIC ACID and contain an integral membrane chloride channel. Each receptor is assembled as a pentamer from a pool of at least 19 different possible subunits. The receptors belong to a superfamily that share a common CYSTEINE loop. Benzodiazepine-Gaba Receptors,GABA-A Receptors,Receptors, Benzodiazepine,Receptors, Benzodiazepine-GABA,Receptors, Diazepam,Receptors, GABA-Benzodiazepine,Receptors, Muscimol,Benzodiazepine Receptor,Benzodiazepine Receptors,Benzodiazepine-GABA Receptor,Diazepam Receptor,Diazepam Receptors,GABA(A) Receptor,GABA-A Receptor,GABA-A Receptor alpha Subunit,GABA-A Receptor beta Subunit,GABA-A Receptor delta Subunit,GABA-A Receptor epsilon Subunit,GABA-A Receptor gamma Subunit,GABA-A Receptor rho Subunit,GABA-Benzodiazepine Receptor,GABA-Benzodiazepine Receptors,Muscimol Receptor,Muscimol Receptors,delta Subunit, GABA-A Receptor,epsilon Subunit, GABA-A Receptor,gamma-Aminobutyric Acid Subtype A Receptors,Benzodiazepine GABA Receptor,Benzodiazepine Gaba Receptors,GABA A Receptor,GABA A Receptor alpha Subunit,GABA A Receptor beta Subunit,GABA A Receptor delta Subunit,GABA A Receptor epsilon Subunit,GABA A Receptor gamma Subunit,GABA A Receptor rho Subunit,GABA A Receptors,GABA Benzodiazepine Receptor,GABA Benzodiazepine Receptors,Receptor, Benzodiazepine,Receptor, Benzodiazepine-GABA,Receptor, Diazepam,Receptor, GABA-A,Receptor, GABA-Benzodiazepine,Receptor, Muscimol,Receptors, Benzodiazepine GABA,Receptors, GABA A,Receptors, GABA Benzodiazepine,delta Subunit, GABA A Receptor,epsilon Subunit, GABA A Receptor,gamma Aminobutyric Acid Subtype A Receptors
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D005442 Flumazenil A potent benzodiazepine receptor antagonist. Since it reverses the sedative and other actions of benzodiazepines, it has been suggested as an antidote to benzodiazepine overdoses. Flumazepil,Anexate,Lanexat,Ro 15-1788,Romazicon,Ro 15 1788,Ro 151788
D005445 Flunitrazepam A benzodiazepine with pharmacologic actions similar to those of DIAZEPAM that can cause ANTEROGRADE AMNESIA. Some reports indicate that it is used as a date rape drug and suggest that it may precipitate violent behavior. The United States Government has banned the importation of this drug. Fluridrazepam,Rohypnol,Fluni 1A Pharma,Flunibeta,Flunimerck,Fluninoc,Flunitrazepam-Neuraxpharm,Flunitrazepam-Ratiopharm,Flunitrazepam-Teva,Flunizep Von Ct,Narcozep,RO-5-4200,Rohipnol,Flunitrazepam Neuraxpharm,Flunitrazepam Ratiopharm,Flunitrazepam Teva,RO54200,Von Ct, Flunizep
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

T H Chiu, and H C Rosenberg
January 1987, Journal de toxicologie clinique et experimentale,
T H Chiu, and H C Rosenberg
January 1985, Psychopharmacology,
T H Chiu, and H C Rosenberg
May 1983, British journal of clinical pharmacology,
T H Chiu, and H C Rosenberg
June 1986, Archives of internal medicine,
T H Chiu, and H C Rosenberg
September 1989, Pharmacology, biochemistry, and behavior,
T H Chiu, and H C Rosenberg
August 1984, Der Anaesthesist,
T H Chiu, and H C Rosenberg
December 1986, Anasthesie, Intensivtherapie, Notfallmedizin,
T H Chiu, and H C Rosenberg
June 1985, Lancet (London, England),
T H Chiu, and H C Rosenberg
January 1982, Psychopharmacology,
Copied contents to your clipboard!