Single sodium channels from rat brain incorporated into planar lipid bilayer membranes. 1983

B K Krueger, and J F Worley, and R J French

A voltage- and time-dependent conductance for sodium ions is responsible for the generation of impulses in most nerve and muscle cells. Changes in the sodium conductance are produced by the opening and closing of many discrete transmembrane channels. We present here the first report of electrical recordings from voltage-dependent sodium channels incorporated into planar lipid bilayers. In bilayers with many channels, batrachotoxin (BTX) induced a steady-state sodium current that was blocked by saxitoxin (STX) at nanomolar concentrations. All channels appeared in the bilayer with their STX blocking sites facing the side of vesicle addition, allowing us to define that as the extracellular side. Current fluctuations due to the opening and closing of single BTX-activated sodium channels were voltage-dependent (unit conductance, 30 pS in 0.5 M NaCl): the channels closed at large hyperpolarizing potentials. Slower fluctuations of the same amplitude, due to the blocking and unblocking of individual channels, were seen after addition of STX. Block of the sodium channels by STX was voltage-dependent, with hyperpolarizing potentials favouring block. The voltage-dependent gating, ionic selectivity and neurotoxin sensitivity suggest that these are the channels that normally underlie the sodium conductance change during the nerve impulse.

UI MeSH Term Description Entries
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D008051 Lipid Bilayers Layers of lipid molecules which are two molecules thick. Bilayer systems are frequently studied as models of biological membranes. Bilayers, Lipid,Bilayer, Lipid,Lipid Bilayer
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002474 Cell-Free System A fractionated cell extract that maintains a biological function. A subcellular fraction isolated by ultracentrifugation or other separation techniques must first be isolated so that a process can be studied free from all of the complex side reactions that occur in a cell. The cell-free system is therefore widely used in cell biology. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p166) Cellfree System,Cell Free System,Cell-Free Systems,Cellfree Systems,System, Cell-Free,System, Cellfree,Systems, Cell-Free,Systems, Cellfree
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012530 Saxitoxin A compound that contains a reduced purine ring system but is not biosynthetically related to the purine alkaloids. It is a poison found in certain edible mollusks at certain times; elaborated by GONYAULAX and consumed by mollusks, fishes, etc. without ill effects. It is neurotoxic and causes RESPIRATORY PARALYSIS and other effects in MAMMALS, known as paralytic SHELLFISH poisoning. Gonyaulax Toxin,Mitilotoxin,Saxitonin,Toxin, Gonyaulax
D012964 Sodium A member of the alkali group of metals. It has the atomic symbol Na, atomic number 11, and atomic weight 23. Sodium Ion Level,Sodium-23,Ion Level, Sodium,Level, Sodium Ion,Sodium 23
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

B K Krueger, and J F Worley, and R J French
October 1991, The Journal of membrane biology,
B K Krueger, and J F Worley, and R J French
January 1984, Nature,
B K Krueger, and J F Worley, and R J French
February 1997, Biophysical journal,
B K Krueger, and J F Worley, and R J French
January 1984, Nature,
B K Krueger, and J F Worley, and R J French
January 1980, Acta biologica et medica Germanica,
B K Krueger, and J F Worley, and R J French
March 1996, The Journal of biological chemistry,
B K Krueger, and J F Worley, and R J French
January 1981, Physiological reviews,
B K Krueger, and J F Worley, and R J French
July 1985, The American journal of physiology,
Copied contents to your clipboard!