ATP-sensitive anion channel from rat brain synaptosomal membranes incorporated into planar lipid bilayers. 1997

J Yuto, and T Ide, and M Kasai
Department of Biophysical Engineering, Faculty of Engineering Science, Osaka University, Japan.

An anion channel was incorporated from rat brain synaptic plasma membrane fractions into planar lipid bilayers. The single-channel conductance was found to be 48.5 pS in choline-Cl solution (300 microM cis/100 microM trans). The anion selectivity of the channel was rather low (PCl/Pcholine = 1.7). The gating rate of the channel did not change with membrane potential over the range of -50 mV to 50 mV. Several drugs, which are known as inhibitors of anion channels, were found to be efficient inhibitors for the synaptosomal anion channel. 4-Acetoamino-4'-isothiocyanostilbene-2,2'-disulfonic acid, ethacrynic acid, indanyloxyacetic acid, and 5-nitro-2-(3-phenylpropylamino) benzoic acid inhibited the channel from the cis side of the membrane, corresponding to the cytoplasmic side of the plasma membrane. We found that the channel is regulated by intracellular ATP at millimolar concentrations. Other nucleotides, ADP and GTP, inhibited the channel as well. Glibenclamide, which is known as an inhibitor of an ATP-regulated potassium channel, inhibited the channel at micromolar concentrations from the trans side of the membrane. It is likely that the synaptosomal anion channel is a member of the ATP-binding cassette superfamily.

UI MeSH Term Description Entries
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D008051 Lipid Bilayers Layers of lipid molecules which are two molecules thick. Bilayer systems are frequently studied as models of biological membranes. Bilayers, Lipid,Bilayer, Lipid,Lipid Bilayer
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009579 Nitrobenzoates Benzoic acid or benzoic acid esters substituted with one or more nitro groups. Nitrobenzoic Acids,Acids, Nitrobenzoic
D009711 Nucleotides The monomeric units from which DNA or RNA polymers are constructed. They consist of a purine or pyrimidine base, a pentose sugar, and a phosphate group. (From King & Stansfield, A Dictionary of Genetics, 4th ed) Nucleotide
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D004232 Diuretics Agents that promote the excretion of urine through their effects on kidney function. Diuretic,Diuretic Effect,Diuretic Effects,Effect, Diuretic,Effects, Diuretic
D004976 Ethacrynic Acid A compound that inhibits symport of sodium, potassium, and chloride primarily in the ascending limb of Henle, but also in the proximal and distal tubules. This pharmacological action results in excretion of these ions, increased urinary output, and reduction in extracellular fluid. This compound has been classified as a loop or high ceiling diuretic. Edecrin,Etacrynic Acid,Ethacrinic Acid,Ethacrynate Sodium,Ethacrynic Acid, Sodium Salt,Hydromedin,Acid, Etacrynic,Acid, Ethacrinic,Acid, Ethacrynic,Sodium, Ethacrynate
D005905 Glyburide An antidiabetic sulfonylurea derivative with actions like those of chlorpropamide Glibenclamide,Daonil,Diabeta,Euglucon 5,Euglucon N,Glybenclamide,HB-419,HB-420,Maninil,Micronase,Neogluconin,HB 419,HB 420,HB419,HB420
D006016 Glycolates Derivatives of ACETIC ACID which contain an hydroxy group attached to the methyl carbon. 2-Hydroxyacetates,Glycolate Ethers,Hydroxyacetate Ethers,Hydroxyacetates,Hydroxyacetic Acids,2 Hydroxyacetates,Acids, Hydroxyacetic,Ethers, Glycolate,Ethers, Hydroxyacetate

Related Publications

J Yuto, and T Ide, and M Kasai
October 1991, The Journal of membrane biology,
J Yuto, and T Ide, and M Kasai
July 1995, Biochimica et biophysica acta,
J Yuto, and T Ide, and M Kasai
August 1991, The American journal of physiology,
J Yuto, and T Ide, and M Kasai
January 1991, Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas,
J Yuto, and T Ide, and M Kasai
June 1992, The American journal of physiology,
Copied contents to your clipboard!