The superior vestibular nucleus: an intracellular HRP study in the cat. II. Non-vestibulo-ocular neurons. 1983

A Mitsacos, and H Reisine, and S M Highstein

Superior vestibular neurons were penetrated with horseradish peroxidase (HRP)-loaded glass microelectrodes in anesthetized cats and identified electrophysiologically following electrical stimulation of the vestibular nerves and oculomotor complex. Neurons that were not antidromically activated from the oculomotor complex were stained by intracellular injection of horseradish peroxidase. Three types of neurons are identified according to their initial axonal trajectories into the cerebellum, the dorsal pontine reticular formation, or the brachium conjunctivum. Ipsilateral vestibular nerve input to all neurons is primarily monosynaptic and excitatory, whereas the contralateral is inhibitory. The neurons are located in the periphery of the superior vestibular nucleus. Soma diameters range from 20.5 micrometers to 44 micrometers. Most neurons exhibit globular and ovoid cell bodies. The dendritic arbors are intermediate between iso- and allodendritic branching patterns. The few spines and dendritic appendages present are distributed mainly distally on the dendrites. Soma size does not correlate with axon diameter, number of dendrites, or dendritic territories.

UI MeSH Term Description Entries
D008636 Mesencephalon The middle of the three primitive cerebral vesicles of the embryonic brain. Without further subdivision, midbrain develops into a short, constricted portion connecting the PONS and the DIENCEPHALON. Midbrain contains two major parts, the dorsal TECTUM MESENCEPHALI and the ventral TEGMENTUM MESENCEPHALI, housing components of auditory, visual, and other sensorimoter systems. Midbrain,Mesencephalons,Midbrains
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009802 Oculomotor Nerve The 3d cranial nerve. The oculomotor nerve sends motor fibers to the levator muscles of the eyelid and to the superior rectus, inferior rectus, and inferior oblique muscles of the eye. It also sends parasympathetic efferents (via the ciliary ganglion) to the muscles controlling pupillary constriction and accommodation. The motor fibers originate in the oculomotor nuclei of the midbrain. Cranial Nerve III,Third Cranial Nerve,Nerve III,Nervus Oculomotorius,Cranial Nerve IIIs,Cranial Nerve, Third,Cranial Nerves, Third,Nerve IIIs,Nerve, Oculomotor,Nerve, Third Cranial,Nerves, Oculomotor,Nerves, Third Cranial,Oculomotor Nerves,Oculomotorius, Nervus,Third Cranial Nerves
D012154 Reticular Formation A region extending from the PONS & MEDULLA OBLONGATA through the MESENCEPHALON, characterized by a diversity of neurons of various sizes and shapes, arranged in different aggregations and enmeshed in a complicated fiber network. Formation, Reticular,Formations, Reticular,Reticular Formations
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D003712 Dendrites Extensions of the nerve cell body. They are short and branched and receive stimuli from other NEURONS. Dendrite
D004292 Dominance, Cerebral Dominance of one cerebral hemisphere over the other in cerebral functions. Cerebral Dominance,Hemispheric Specialization,Dominances, Cerebral,Specialization, Hemispheric
D004525 Efferent Pathways Nerve structures through which impulses are conducted from a nerve center toward a peripheral site. Such impulses are conducted via efferent neurons (NEURONS, EFFERENT), such as MOTOR NEURONS, autonomic neurons, and hypophyseal neurons. Motor Pathways,Efferent Pathway,Pathway, Efferent,Pathways, Efferent

Related Publications

A Mitsacos, and H Reisine, and S M Highstein
January 1995, Acta oto-laryngologica. Supplementum,
A Mitsacos, and H Reisine, and S M Highstein
January 1992, Acta oto-laryngologica. Supplementum,
A Mitsacos, and H Reisine, and S M Highstein
January 1988, The Annals of otology, rhinology, and laryngology,
A Mitsacos, and H Reisine, and S M Highstein
January 1991, Acta oto-laryngologica. Supplementum,
A Mitsacos, and H Reisine, and S M Highstein
October 1996, The Annals of otology, rhinology, and laryngology,
A Mitsacos, and H Reisine, and S M Highstein
December 1987, Brain research,
A Mitsacos, and H Reisine, and S M Highstein
May 1983, Brain research,
A Mitsacos, and H Reisine, and S M Highstein
November 1987, The Journal of comparative neurology,
Copied contents to your clipboard!