Suppression of endogenous murine leukemia virus by maternal resistance factor. 1983

M Melamedoff, and F Lilly, and M L Duran-Reynals

Females of the RF and SJL inbred mouse strains transmit to their progeny of both sexes a nonmendelian maternal resistance factor (MRF) able to suppress the expression of endogenous ecotropic murine leukemia virus (E-MuLV). This MRF is demonstrable in crosses with AKR mice by comparing E-MuLV expression in the spleens and thymuses of reciprocal F1 generations. DBA/2 and ST/b mice are MRF negative by these criteria. Neonatal inoculation of E-MuLV-containing spleen extracts gives rise to persistent expression of infectious virus in mice of the MRF- but not the MRF+ strains. However, inoculation of the virus in 30-d-old females of the MRF- strains no longer leads to a state of persistent infection; instead, these females become MRF+ and transmit protection against E-MuLV expression to their progeny by AKR and RF males. The MRF appears to be transmitted to the progeny mainly through the milk, since foster-nursing AKR neonates on RF (but not DBA/2) mothers greatly reduces E-MuLV expression in the progeny. These RF-fostered AKR mice also show a reduced and delayed lymphoma incidence, a finding consistent with the idea that maternally transmitted resistance to E-MuLV expression is the basis for the classic maternal resistance to lymphomagenesis seen in the progeny of RF mothers.

UI MeSH Term Description Entries
D007113 Immunity, Innate The capacity of a normal organism to remain unaffected by microorganisms and their toxins. It results from the presence of naturally occurring ANTI-INFECTIVE AGENTS, constitutional factors such as BODY TEMPERATURE and immediate acting immune cells such as NATURAL KILLER CELLS. Immunity, Native,Immunity, Natural,Immunity, Non-Specific,Resistance, Natural,Innate Immune Response,Innate Immunity,Immune Response, Innate,Immune Responses, Innate,Immunity, Non Specific,Innate Immune Responses,Native Immunity,Natural Immunity,Natural Resistance,Non-Specific Immunity
D007942 Leukemia, Experimental Leukemia induced experimentally in animals by exposure to leukemogenic agents, such as VIRUSES; RADIATION; or by TRANSPLANTATION of leukemic tissues. Experimental Leukemia,Experimental Leukemias,Leukemia Model, Animal,Leukemias, Experimental,Animal Leukemia Model,Animal Leukemia Models,Leukemia Models, Animal
D008223 Lymphoma A general term for various neoplastic diseases of the lymphoid tissue. Germinoblastoma,Lymphoma, Malignant,Reticulolymphosarcoma,Sarcoma, Germinoblastic,Germinoblastic Sarcoma,Germinoblastic Sarcomas,Germinoblastomas,Lymphomas,Lymphomas, Malignant,Malignant Lymphoma,Malignant Lymphomas,Reticulolymphosarcomas,Sarcomas, Germinoblastic
D008431 Maternal-Fetal Exchange Exchange of substances between the maternal blood and the fetal blood at the PLACENTA via PLACENTAL CIRCULATION. The placental barrier excludes microbial or viral transmission. Transplacental Exposure,Exchange, Maternal-Fetal,Exposure, Transplacental,Maternal Fetal Exchange
D008806 Mice, Inbred AKR An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. Mice, AKR,Mouse, AKR,Mouse, Inbred AKR,AKR Mice,AKR Mice, Inbred,AKR Mouse,AKR Mouse, Inbred,Inbred AKR Mice,Inbred AKR Mouse
D008811 Mice, Inbred DBA An inbred strain of mouse. Specific substrains are used in a variety of areas of BIOMEDICAL RESEARCH such as DBA/1J, which is used as a model for RHEUMATOID ARTHRITIS. Mice, DBA,Mouse, DBA,Mouse, Inbred DBA,DBA Mice,DBA Mice, Inbred,DBA Mouse,DBA Mouse, Inbred,Inbred DBA Mice,Inbred DBA Mouse
D008815 Mice, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations, or by parent x offspring matings carried out with certain restrictions. All animals within an inbred strain trace back to a common ancestor in the twentieth generation. Inbred Mouse Strains,Inbred Strain of Mice,Inbred Strain of Mouse,Inbred Strains of Mice,Mouse, Inbred Strain,Inbred Mouse Strain,Mouse Inbred Strain,Mouse Inbred Strains,Mouse Strain, Inbred,Mouse Strains, Inbred,Strain, Inbred Mouse,Strains, Inbred Mouse
D009052 Leukemia Virus, Murine Species of GAMMARETROVIRUS, containing many well-defined strains, producing leukemia in mice. Disease is commonly induced by injecting filtrates of propagable tumors into newborn mice. Graffi Virus,Graffi's Chloroleukemic Strain,Leukemia Viruses, Murine,Mouse Leukemia Viruses,Murine Leukemia Virus,Murine Leukemia Viruses,Graffi Chloroleukemic Strain,Graffis Chloroleukemic Strain,Leukemia Viruses, Mouse
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D010948 Viral Plaque Assay Method for measuring viral infectivity and multiplication in CULTURED CELLS. Clear lysed areas or plaques develop as the VIRAL PARTICLES are released from the infected cells during incubation. With some VIRUSES, the cells are killed by a cytopathic effect; with others, the infected cells are not killed but can be detected by their hemadsorptive ability. Sometimes the plaque cells contain VIRAL ANTIGENS which can be measured by IMMUNOFLUORESCENCE. Bacteriophage Plaque Assay,Assay, Bacteriophage Plaque,Assay, Viral Plaque,Assays, Bacteriophage Plaque,Assays, Viral Plaque,Bacteriophage Plaque Assays,Plaque Assay, Bacteriophage,Plaque Assay, Viral,Plaque Assays, Bacteriophage,Plaque Assays, Viral,Viral Plaque Assays

Related Publications

M Melamedoff, and F Lilly, and M L Duran-Reynals
June 1984, Journal of the National Cancer Institute,
M Melamedoff, and F Lilly, and M L Duran-Reynals
January 1989, Journal of immunology (Baltimore, Md. : 1950),
M Melamedoff, and F Lilly, and M L Duran-Reynals
December 1989, Journal of virology,
M Melamedoff, and F Lilly, and M L Duran-Reynals
September 1976, Virology,
M Melamedoff, and F Lilly, and M L Duran-Reynals
December 2016, Virology,
M Melamedoff, and F Lilly, and M L Duran-Reynals
May 1966, Science (New York, N.Y.),
M Melamedoff, and F Lilly, and M L Duran-Reynals
December 2001, Immunology letters,
M Melamedoff, and F Lilly, and M L Duran-Reynals
June 2016, Nature communications,
M Melamedoff, and F Lilly, and M L Duran-Reynals
October 1980, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!