Ross River virus 26 s RNA: complete nucleotide sequence and deduced sequence of the encoded structural proteins. 1983

L Dalgarno, and C M Rice, and J H Strauss

The complete sequence of the 26 S RNA of Ross River virus (T48 strain) has been obtained and from this the amino acid sequences of the encoded structural proteins have been deduced. These include a basic capsid protein and two envelope glycoproteins. The nucleotide sequence was obtained by chemical sequence analysis of both single-stranded and double-stranded cDNA made to RNA and the sequence data so obtained was rapidly aligned by making use of the protein homology found among the alphaviruses. The polyprotein precursor encoded by the 26 S RNA of Ross River virus is 75% homologous to that of Semliki Forest virus and 48% homologous to that of Sindbis virus. The extent of homology is not uniform within a protein or between proteins and this is discussed with respect to the possible function of the various polypeptide domains in the virus life cycle. In each case the putative attachment site of the amino proximal carbohydrate chains of the three glycoproteins is conserved, whereas the attachment site of a second chain, if present, is not conserved. The 3'-untranslated region of Ross River virus RNA is 524 nucleotides long. It contains a sequence of about 50 nucleotides in length which is present in four copies but which is not shared with other alphaviruses examined.

UI MeSH Term Description Entries
D012091 Repetitive Sequences, Nucleic Acid Sequences of DNA or RNA that occur in multiple copies. There are several types: INTERSPERSED REPETITIVE SEQUENCES are copies of transposable elements (DNA TRANSPOSABLE ELEMENTS or RETROELEMENTS) dispersed throughout the genome. TERMINAL REPEAT SEQUENCES flank both ends of another sequence, for example, the long terminal repeats (LTRs) on RETROVIRUSES. Variations may be direct repeats, those occurring in the same direction, or inverted repeats, those opposite to each other in direction. TANDEM REPEAT SEQUENCES are copies which lie adjacent to each other, direct or inverted (INVERTED REPEAT SEQUENCES). DNA Repetitious Region,Direct Repeat,Genes, Selfish,Nucleic Acid Repetitive Sequences,Repetitive Region,Selfish DNA,Selfish Genes,DNA, Selfish,Repetitious Region, DNA,Repetitive Sequence,DNA Repetitious Regions,DNAs, Selfish,Direct Repeats,Gene, Selfish,Repeat, Direct,Repeats, Direct,Repetitious Regions, DNA,Repetitive Regions,Repetitive Sequences,Selfish DNAs,Selfish Gene
D002213 Capsid The outer protein protective shell of a virus, which protects the viral nucleic acid. Capsids are composed of repeating units (capsomers or capsomeres) of CAPSID PROTEINS which when assembled together form either an icosahedral or helical shape. Procapsid,Prohead,Capsids,Procapsids,Proheads
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D005814 Genes, Viral The functional hereditary units of VIRUSES. Viral Genes,Gene, Viral,Viral Gene
D000524 Alphavirus A genus of TOGAVIRIDAE, also known as Group A arboviruses. They are serologically related to each other and are transmitted by mosquitoes. The type species is the SINDBIS VIRUS. Arboviruses, Group A,Barmah forest virus,Getah virus,Sagiyama virus,Alpha Virus,Alphaviruses,Alpha Viruses,Arbovirus, Group A,Group A Arbovirus,Group A Arboviruses
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001482 Base Composition The relative amounts of the PURINES and PYRIMIDINES in a nucleic acid. Base Ratio,G+C Composition,Guanine + Cytosine Composition,G+C Content,GC Composition,GC Content,Guanine + Cytosine Content,Base Compositions,Base Ratios,Composition, Base,Composition, G+C,Composition, GC,Compositions, Base,Compositions, G+C,Compositions, GC,Content, G+C,Content, GC,Contents, G+C,Contents, GC,G+C Compositions,G+C Contents,GC Compositions,GC Contents,Ratio, Base,Ratios, Base
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012367 RNA, Viral Ribonucleic acid that makes up the genetic material of viruses. Viral RNA

Related Publications

L Dalgarno, and C M Rice, and J H Strauss
April 1981, Proceedings of the National Academy of Sciences of the United States of America,
L Dalgarno, and C M Rice, and J H Strauss
May 1984, Biochimie,
L Dalgarno, and C M Rice, and J H Strauss
March 1989, The Journal of general virology,
L Dalgarno, and C M Rice, and J H Strauss
February 1984, Virology,
L Dalgarno, and C M Rice, and J H Strauss
October 1988, Virus genes,
L Dalgarno, and C M Rice, and J H Strauss
January 1995, Archives of virology,
L Dalgarno, and C M Rice, and J H Strauss
October 1987, The Journal of general virology,
L Dalgarno, and C M Rice, and J H Strauss
December 1987, Virology,
Copied contents to your clipboard!