Simulation of potassium accumulation in clefts of Purkinje fibers: effect on membrane electrical activity. 1983

A Coulombe, and E Coraboeuf

Purkinje fiber action potentials and concomitant intercellular cleft [K] variations were reconstructed by using modified McAllister, Noble & Tsien (1975) equations including the pump current, ip, and the pacemaker current, if. Three different mean cleft widths were chosen: 40, 200 and 1000 nm. Assuming a cylindrical arrangement of the cells in the bundle, the cleft [K] gradient across the bundle was calculated by using the radial cylindrical diffusion equation. The effects of varying several parameters (cleft width, tortuosity, ip and if) were studied in conditions corresponding to two different values of [K] in the bulk solution, namely 2.7 and 5.4 mM. The shortening influence on the action potential of the systolic increase in cleft [K] was detectable only in the case of the smallest cleft width. Reduction in electrogenic pump activity led to alterations of the electrical activity which depended on the cleft width. The evolution of the intercellular [K] during each action potential and the following diastolic period was normally biphasic; a small reaccumulation during the late part of the diastole was induced by the K component of the if current. Experimentally determined intercellular [K] variations described in the literature exhibit a monophasic evolution. Such a monophasic evolution could be reproduced after reduction of both if and the transient outward K current and suppression of the negative slope of the ik1-Em relationship. In this case the amplitude of the cyclic change in intercellular [K] was approximately equal to 0.2 mM (for a 200 nm cleft width), a value much lower than that experimentally recorded. Possible reasons for this discrepancy are discussed. A simplified three compartment model for K diffusion was also used. Results obtained with the two models demonstrated that the simplified model can be used as a reasonable approximation of the more complex radial diffusion model, with a reduction in computation time reaching 80% or more.

UI MeSH Term Description Entries
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D008955 Models, Cardiovascular Theoretical representations that simulate the behavior or activity of the cardiovascular system, processes, or phenomena; includes the use of mathematical equations, computers and other electronic equipment. Cardiovascular Model,Cardiovascular Models,Model, Cardiovascular
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011690 Purkinje Fibers Modified cardiac muscle fibers composing the terminal portion of the heart conduction system. Purkinje Fiber,Fiber, Purkinje,Fibers, Purkinje
D004058 Diffusion The tendency of a gas or solute to pass from a point of higher pressure or concentration to a point of lower pressure or concentration and to distribute itself throughout the available space. Diffusion, especially FACILITATED DIFFUSION, is a major mechanism of BIOLOGICAL TRANSPORT. Diffusions
D006329 Heart Conduction System An impulse-conducting system composed of modified cardiac muscle, having the power of spontaneous rhythmicity and conduction more highly developed than the rest of the heart. Conduction System, Heart,Conduction Systems, Heart,Heart Conduction Systems,System, Heart Conduction,Systems, Heart Conduction
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential

Related Publications

A Coulombe, and E Coraboeuf
October 1974, The Journal of general physiology,
A Coulombe, and E Coraboeuf
January 1967, Pflugers Archiv fur die gesamte Physiologie des Menschen und der Tiere,
A Coulombe, and E Coraboeuf
November 1957, Ceskoslovenska fysiologie,
A Coulombe, and E Coraboeuf
April 1983, The Journal of pharmacology and experimental therapeutics,
A Coulombe, and E Coraboeuf
September 1979, The American journal of physiology,
A Coulombe, and E Coraboeuf
October 1982, Journal of electrocardiology,
A Coulombe, and E Coraboeuf
May 1969, The Journal of general physiology,
Copied contents to your clipboard!