Specific binding of 1,25 dihydroxyvitamin D3 in lymphocytes. 1984

R M Walter, and H C Freake, and J Iwasaki, and J Lynn, and I MacIntyre

We examined ten cellular or tissue sources of lymphocytes for specific binding of 1,25(OH)2D3, the hormonally active form of vitamin D3. A specific-binding protein was found in three of these sources. Scatchard analysis of cytosol from a follicular lymphoma cell line revealed binding sites with a Kd of 7.0 X 10(-11) and a receptor concentration of 6.6 fmol/mg protein. Sucrose density centrifugation of 3H-1,25(OH)2D3 labeled cytosol showed a 3.75 peak which was absent in cytosols incubated with excess nonradioactive 1,25(OH)2D3. The relative amounts of vitamin D3 metabolites required to displace 50% of the specifically bound 3H-1,25(OH)2D3 were 1,25(OH)2D3: 1,24,25(OH)3D3: 25(OH)D3: 24,25(OH)2D3 = 1: 180: 1000: 2700. Excess vitamin D3, cortisol, and estradiol failed to displace 3H-1,25(OH)2D3. Scatchard analysis of spleen cytosol from a patient with prolymphocytic transformation of chronic lymphocytic leukemia demonstrated a binding protein with a Kd of 1.2 X 10(-10) and a receptor concentration of 0.2 fmol/mg protein. DNA cellulose binding confirmed the presence of the specific-binding protein in this cytosol. Specific binding of 3H-1,25(OH)2D3 was also quantitated in a cell line from a patient with Burkitt's lymphoma with a Kd of 0.3 X 10(-10) and a receptor concentration of 29.6 fmol/mg protein. No specific binding of 3H-1,25(OH)2D3 was observed in lymphocytes from seven other malignant and nonmalignant sources. These results are the first to demonstrate a specific-binding protein for 1,25(OH)2D3 in lymphocytes from tissue and from these specific cell lines. The presence of this protein in some lymphocytes but not others may reflect the state of activation of the lymphocytes.

UI MeSH Term Description Entries
D007945 Leukemia, Lymphoid Leukemia associated with HYPERPLASIA of the lymphoid tissues and increased numbers of circulating malignant LYMPHOCYTES and lymphoblasts. Leukemia, Lymphocytic,Lymphocytic Leukemia,Lymphoid Leukemia,Leukemias, Lymphocytic,Leukemias, Lymphoid,Lymphocytic Leukemias,Lymphoid Leukemias
D008214 Lymphocytes White blood cells formed in the body's lymphoid tissue. The nucleus is round or ovoid with coarse, irregularly clumped chromatin while the cytoplasm is typically pale blue with azurophilic (if any) granules. Most lymphocytes can be classified as either T or B (with subpopulations of each), or NATURAL KILLER CELLS. Lymphoid Cells,Cell, Lymphoid,Cells, Lymphoid,Lymphocyte,Lymphoid Cell
D008223 Lymphoma A general term for various neoplastic diseases of the lymphoid tissue. Germinoblastoma,Lymphoma, Malignant,Reticulolymphosarcoma,Sarcoma, Germinoblastic,Germinoblastic Sarcoma,Germinoblastic Sarcomas,Germinoblastomas,Lymphomas,Lymphomas, Malignant,Malignant Lymphoma,Malignant Lymphomas,Reticulolymphosarcomas,Sarcomas, Germinoblastic
D011987 Receptors, Steroid Proteins found usually in the cytoplasm or nucleus that specifically bind steroid hormones and trigger changes influencing the behavior of cells. The steroid receptor-steroid hormone complex regulates the transcription of specific genes. Corticosteroid Receptors,Receptors, Corticosteroid,Steroid Receptors,Corticosteroid Receptor,Receptors, Steroids,Steroid Receptor,Receptor, Corticosteroid,Receptor, Steroid,Steroids Receptors
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001667 Binding, Competitive The interaction of two or more substrates or ligands with the same binding site. The displacement of one by the other is used in quantitative and selective affinity measurements. Competitive Binding
D018167 Receptors, Calcitriol Proteins, usually found in the cytoplasm, that specifically bind calcitriol, migrate to the nucleus, and regulate transcription of specific segments of DNA with the participation of D receptor interacting proteins (called DRIP). Vitamin D is converted in the liver and kidney to calcitriol and ultimately acts through these receptors. Calcitriol Receptors,Cholecalciferol Receptors,Receptors, Vitamin D,Vitamin D 3 Receptors,Vitamin D Receptors,1,25-Dihydroxycholecalciferol Receptor,1,25-Dihydroxycholecalciferol Receptors,1,25-Dihydroxyvitamin D 3 Receptor,1,25-Dihydroxyvitamin D3 Receptor,1,25-Dihydroxyvitamin D3 Receptors,Calcitriol Receptor,Receptors, 1,25-Dihydroxyvitamin D 3,Receptors, Cholecalciferol,Receptors, Vitamin D 3,Receptors, Vitamin D3,Vitamin D 3 Receptor,Vitamin D Receptor,Vitamin D3 Receptor,Vitamin D3 Receptors,1,25 Dihydroxycholecalciferol Receptor,1,25 Dihydroxycholecalciferol Receptors,1,25 Dihydroxyvitamin D 3 Receptor,1,25 Dihydroxyvitamin D3 Receptor,1,25 Dihydroxyvitamin D3 Receptors,D Receptor, Vitamin,D Receptors, Vitamin,D3 Receptor, 1,25-Dihydroxyvitamin,D3 Receptor, Vitamin,D3 Receptors, 1,25-Dihydroxyvitamin,D3 Receptors, Vitamin,Receptor, 1,25-Dihydroxycholecalciferol,Receptor, 1,25-Dihydroxyvitamin D3,Receptor, Calcitriol,Receptor, Vitamin D,Receptor, Vitamin D3,Receptors, 1,25-Dihydroxycholecalciferol,Receptors, 1,25-Dihydroxyvitamin D3
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

R M Walter, and H C Freake, and J Iwasaki, and J Lynn, and I MacIntyre
March 1992, European journal of pharmacology,
R M Walter, and H C Freake, and J Iwasaki, and J Lynn, and I MacIntyre
December 1980, Biochemical and biophysical research communications,
R M Walter, and H C Freake, and J Iwasaki, and J Lynn, and I MacIntyre
May 1980, The Journal of biological chemistry,
R M Walter, and H C Freake, and J Iwasaki, and J Lynn, and I MacIntyre
August 1980, Archives of biochemistry and biophysics,
R M Walter, and H C Freake, and J Iwasaki, and J Lynn, and I MacIntyre
July 1977, The Journal of biological chemistry,
R M Walter, and H C Freake, and J Iwasaki, and J Lynn, and I MacIntyre
August 1986, Archives of biochemistry and biophysics,
R M Walter, and H C Freake, and J Iwasaki, and J Lynn, and I MacIntyre
August 1977, Steroids,
R M Walter, and H C Freake, and J Iwasaki, and J Lynn, and I MacIntyre
June 1977, Biochemical and biophysical research communications,
R M Walter, and H C Freake, and J Iwasaki, and J Lynn, and I MacIntyre
December 1989, Proceedings of the National Academy of Sciences of the United States of America,
R M Walter, and H C Freake, and J Iwasaki, and J Lynn, and I MacIntyre
September 1977, Science (New York, N.Y.),
Copied contents to your clipboard!