Mechanism of mutagenesis by O6-methylguanine. 1984

J S Eadie, and M Conrad, and D Toorchen, and M D Topal

O6-methylguanine (O6meG) lesions of double-stranded DNA have been associated with mutation and neoplastic transformation. These lesions can, in principle, be produced by at least three different mechanisms: direct alkylation of G X C base pairs in double-stranded DNA; alkylation of guanine residues in single-stranded regions of DNA associated with replication forks; and alkylation of the DNA precursor pool followed by incorporation of O6-methyl deoxyguanosine triphosphate (O6-medGTP) during DNA replication. DNA biosynthesis subsequent to all three events will generate predominantly O6-meG X T base pairs as O6meG preferentially pairs with T. We show here that O6meG X T base pairs are mutagenic; that transalkylase repair has a direct role in the generation of mutations induced by alkylated pool nucleotides; and that the Escherichia coli mismatch repair system is capable of repairing mutagenic G X T intermediates.

UI MeSH Term Description Entries
D009152 Mutagenicity Tests Tests of chemical substances and physical agents for mutagenic potential. They include microbial, insect, mammalian cell, and whole animal tests. Genetic Toxicity Tests,Genotoxicity Tests,Mutagen Screening,Tests, Genetic Toxicity,Toxicity Tests, Genetic,Genetic Toxicity Test,Genotoxicity Test,Mutagen Screenings,Mutagenicity Test,Screening, Mutagen,Screenings, Mutagen,Test, Genotoxicity,Tests, Genotoxicity,Toxicity Test, Genetic
D009153 Mutagens Chemical agents that increase the rate of genetic mutation by interfering with the function of nucleic acids. A clastogen is a specific mutagen that causes breaks in chromosomes. Clastogen,Clastogens,Genotoxin,Genotoxins,Mutagen
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D003090 Coliphages Viruses whose host is Escherichia coli. Escherichia coli Phages,Coliphage,Escherichia coli Phage,Phage, Escherichia coli,Phages, Escherichia coli
D004260 DNA Repair The removal of DNA LESIONS and/or restoration of intact DNA strands without BASE PAIR MISMATCHES, intrastrand or interstrand crosslinks, or discontinuities in the DNA sugar-phosphate backbones. DNA Damage Response
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli

Related Publications

J S Eadie, and M Conrad, and D Toorchen, and M D Topal
November 1996, The Journal of biological chemistry,
J S Eadie, and M Conrad, and D Toorchen, and M D Topal
May 2018, Proceedings of the National Academy of Sciences of the United States of America,
J S Eadie, and M Conrad, and D Toorchen, and M D Topal
December 2009, The journal of physical chemistry. B,
J S Eadie, and M Conrad, and D Toorchen, and M D Topal
July 1991, Biochemistry,
J S Eadie, and M Conrad, and D Toorchen, and M D Topal
December 1982, Proceedings of the National Academy of Sciences of the United States of America,
J S Eadie, and M Conrad, and D Toorchen, and M D Topal
January 1982, Journal of molecular biology,
J S Eadie, and M Conrad, and D Toorchen, and M D Topal
January 1994, The Journal of biological chemistry,
J S Eadie, and M Conrad, and D Toorchen, and M D Topal
October 1984, Proceedings of the National Academy of Sciences of the United States of America,
J S Eadie, and M Conrad, and D Toorchen, and M D Topal
November 2002, Mutagenesis,
J S Eadie, and M Conrad, and D Toorchen, and M D Topal
August 1986, Carcinogenesis,
Copied contents to your clipboard!